Skip to content

Commit 3453825

Browse files
committed
rm init inside solvers
1 parent cc690bd commit 3453825

File tree

7 files changed

+0
-28
lines changed

7 files changed

+0
-28
lines changed

skglm/solvers/anderson_cd.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -80,10 +80,8 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
8080

8181
is_sparse = sparse.issparse(X)
8282
if is_sparse:
83-
datafit.initialize_sparse(X.data, X.indptr, X.indices, y)
8483
lipschitz = datafit.get_lipschitz_sparse(X.data, X.indptr, X.indices, y)
8584
else:
86-
datafit.initialize(X, y)
8785
lipschitz = datafit.get_lipschitz(X, y)
8886

8987
if len(w) != n_features + self.fit_intercept:

skglm/solvers/fista.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -51,12 +51,10 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
5151
Xw = Xw_init.copy() if Xw_init is not None else np.zeros(n_samples)
5252

5353
if X_is_sparse:
54-
datafit.initialize_sparse(X.data, X.indptr, X.indices, y)
5554
lipschitz = datafit.get_global_lipschitz_sparse(
5655
X.data, X.indptr, X.indices, y
5756
)
5857
else:
59-
datafit.initialize(X, y)
6058
lipschitz = datafit.get_global_lipschitz(X, y)
6159

6260
for n_iter in range(self.max_iter):

skglm/solvers/group_bcd.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -76,10 +76,8 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
7676

7777
is_sparse = issparse(X)
7878
if is_sparse:
79-
datafit.initialize_sparse(X.data, X.indptr, X.indices, y)
8079
lipschitz = datafit.get_lipschitz_sparse(X.data, X.indptr, X.indices, y)
8180
else:
82-
datafit.initialize(X, y)
8381
lipschitz = datafit.get_lipschitz(X, y)
8482

8583
all_groups = np.arange(n_groups)

skglm/solvers/group_prox_newton.py

Lines changed: 0 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -69,13 +69,6 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
6969
stop_crit = 0.
7070
p_objs_out = []
7171

72-
# TODO: to be isolated in a seperated method
73-
is_sparse = issparse(X)
74-
if is_sparse:
75-
datafit.initialize_sparse(X.data, X.indptr, X.indices, y)
76-
else:
77-
datafit.initialize(X, y)
78-
7972
for iter in range(self.max_iter):
8073
grad = _construct_grad(X, y, w, Xw, datafit, all_groups)
8174

skglm/solvers/lbfgs.py

Lines changed: 0 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -38,13 +38,6 @@ def __init__(self, max_iter=50, tol=1e-4, verbose=False):
3838

3939
def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
4040

41-
# TODO: to be isolated in a seperated method
42-
is_sparse = issparse(X)
43-
if is_sparse:
44-
datafit.initialize_sparse(X.data, X.indptr, X.indices, y)
45-
else:
46-
datafit.initialize(X, y)
47-
4841
def objective(w):
4942
Xw = X @ w
5043
datafit_value = datafit.value(y, w, Xw)

skglm/solvers/multitask_bcd.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -54,10 +54,8 @@ def _solve(self, X, Y, datafit, penalty, W_init=None, XW_init=None):
5454

5555
is_sparse = sparse.issparse(X)
5656
if is_sparse:
57-
datafit.initialize_sparse(X.data, X.indptr, X.indices, Y)
5857
lipschitz = datafit.get_lipschitz_sparse(X.data, X.indptr, X.indices, Y)
5958
else:
60-
datafit.initialize(X, Y)
6159
lipschitz = datafit.get_lipschitz(X, Y)
6260

6361
for t in range(self.max_iter):

skglm/solvers/prox_newton.py

Lines changed: 0 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -85,12 +85,6 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
8585
if is_sparse:
8686
X_bundles = (X.data, X.indptr, X.indices)
8787

88-
# TODO: to be isolated in a seperated method
89-
if is_sparse:
90-
datafit.initialize_sparse(X.data, X.indptr, X.indices, y)
91-
else:
92-
datafit.initialize(X, y)
93-
9488
if self.ws_strategy == "fixpoint":
9589
X_square = X.multiply(X) if is_sparse else X ** 2
9690

0 commit comments

Comments
 (0)