|
| 1 | +""" |
| 2 | +QuantileHuber vs Sklearn |
| 3 | +""" |
| 4 | +import numpy as np |
| 5 | +import time |
| 6 | +from sklearn.linear_model import QuantileRegressor |
| 7 | +from skglm.experimental.quantile_huber import QuantileHuber, SmoothQuantileRegressor |
| 8 | +import matplotlib.pyplot as plt |
| 9 | +from sklearn.datasets import make_regression |
| 10 | + |
| 11 | + |
| 12 | +def pinball_loss(residuals, quantile): |
| 13 | + """True pinball loss.""" |
| 14 | + return np.mean(residuals * (quantile - (residuals < 0))) |
| 15 | + |
| 16 | + |
| 17 | +X, y = make_regression(n_samples=1000, n_features=10, noise=0.1, random_state=0) |
| 18 | +tau = 0.8 |
| 19 | + |
| 20 | +start = time.time() |
| 21 | +sk = QuantileRegressor(quantile=tau, alpha=0.1, fit_intercept=True) |
| 22 | +sk.fit(X, y) |
| 23 | +sk_pred = sk.predict(X) |
| 24 | +sk_time = time.time() - start |
| 25 | +sk_cov = np.mean(y <= sk_pred) |
| 26 | +sk_pinball = pinball_loss(y - sk_pred, tau) |
| 27 | + |
| 28 | +start = time.time() |
| 29 | +qh = SmoothQuantileRegressor( |
| 30 | + quantile=tau, |
| 31 | + alpha=0.1, |
| 32 | + delta_init=0.5, |
| 33 | + delta_final=0.01, |
| 34 | + n_deltas=5, |
| 35 | + solver="AndersonCD", |
| 36 | + verbose=True, |
| 37 | + fit_intercept=True |
| 38 | +) |
| 39 | +qh.fit(X, y) |
| 40 | +qh_time = time.time() - start |
| 41 | +qh_pred = qh.predict(X) |
| 42 | +qh_cov = np.mean(y <= qh_pred) |
| 43 | +qh_pinball = pinball_loss(y - qh_pred, tau) |
| 44 | + |
| 45 | + |
| 46 | +print(sk.coef_) |
| 47 | +print(qh.est.coef_) |
| 48 | + |
| 49 | +# print(f"{'Method':<12} {'Q':<4} {'Coverage':<8} {'Time':<6} " |
| 50 | +# f"{'Pinball':<8}") |
| 51 | +# print("-" * 55) |
| 52 | +# print(f"{'Sklearn':<12} {tau:<4} {sk_cov:<8.3f} {sk_time:<6.3f} " |
| 53 | +# f"{sk_pinball:<8.4f}") |
| 54 | +# print(f"{'QuantileHuber':<12} {tau:<4} {qh_cov:<8.3f} {qh_time:<6.3f} " |
| 55 | +# f"{qh_pinball:<8.4f}") |
| 56 | + |
| 57 | + |
| 58 | +# quantiles = [0.1, 0.5, 0.9] |
| 59 | +# delta = 0.5 |
| 60 | +# residuals = np.linspace(-3, 3, 500) |
| 61 | +# _, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4)) |
| 62 | +# for tau in quantiles: |
| 63 | +# qh = QuantileHuber(quantile=tau, delta=delta) |
| 64 | +# loss = [qh._loss_sample(r) for r in residuals] |
| 65 | +# grad = [qh._grad_per_sample(r) for r in residuals] |
| 66 | +# ax1.plot(residuals, loss, label=f"τ={tau}") |
| 67 | +# ax2.plot(residuals, grad, label=f"τ={tau}") |
| 68 | +# ax1.set_title("QuantileHuber Loss") |
| 69 | +# ax1.set_xlabel("Residual") |
| 70 | +# ax1.set_ylabel("Loss") |
| 71 | +# ax1.legend() |
| 72 | +# ax2.set_title("QuantileHuber Gradient") |
| 73 | +# ax2.set_xlabel("Residual") |
| 74 | +# ax2.set_ylabel("Gradient") |
| 75 | +# ax2.legend() |
| 76 | +# plt.tight_layout() |
| 77 | +# plt.show() |
0 commit comments