|
| 1 | +import numpy as np |
| 2 | +from joblib import Parallel, delayed |
| 3 | +from sklearn.metrics import get_scorer |
| 4 | +from sklearn.utils.extmath import softmax |
| 5 | +from skglm.datafits import Logistic, QuadraticSVC |
| 6 | +from skglm.estimators import GeneralizedLinearEstimator |
| 7 | + |
| 8 | + |
| 9 | +def _kfold_split(n_samples, k, rng): |
| 10 | + indices = rng.permutation(n_samples) |
| 11 | + fold_size = n_samples // k |
| 12 | + extra = n_samples % k |
| 13 | + |
| 14 | + start = 0 |
| 15 | + for i in range(k): |
| 16 | + end = start + fold_size + (1 if i < extra else 0) |
| 17 | + test = indices[start:end] |
| 18 | + train = np.concatenate([indices[:start], indices[end:]]) |
| 19 | + yield train, test |
| 20 | + start = end |
| 21 | + |
| 22 | + |
| 23 | +class GeneralizedLinearEstimatorCV(GeneralizedLinearEstimator): |
| 24 | + """CV wrapper for GeneralizedLinearEstimator.""" |
| 25 | + |
| 26 | + def __init__(self, datafit, penalty, solver, alphas=None, l1_ratio=None, |
| 27 | + cv=4, n_jobs=1, random_state=None, scoring=None, |
| 28 | + eps=1e-3, n_alphas=100): |
| 29 | + super().__init__(datafit=datafit, penalty=penalty, solver=solver) |
| 30 | + self.alphas = alphas |
| 31 | + self.l1_ratio = l1_ratio |
| 32 | + self.cv = cv |
| 33 | + self.n_jobs = n_jobs |
| 34 | + self.random_state = random_state |
| 35 | + self.scoring = scoring |
| 36 | + self.eps = eps |
| 37 | + self.n_alphas = n_alphas |
| 38 | + |
| 39 | + def _score(self, y_true, y_pred): |
| 40 | + """Compute the loss or performance score (lower is better).""" |
| 41 | + if hasattr(self.datafit, "loss"): |
| 42 | + return float(np.mean(self.datafit.loss(y_true, y_pred))) |
| 43 | + |
| 44 | + if self.scoring is not None: |
| 45 | + if callable(self.scoring): |
| 46 | + return -float(self.scoring(y_true, y_pred)) |
| 47 | + scorer = get_scorer(self.scoring) |
| 48 | + return -float(scorer._score_func(y_true, y_pred, **scorer._kwargs)) |
| 49 | + |
| 50 | + if isinstance(self.datafit, (Logistic, QuadraticSVC)): |
| 51 | + return -float(np.mean(y_true == (y_pred > 0))) |
| 52 | + return float(np.mean((y_true - y_pred) ** 2)) |
| 53 | + |
| 54 | + def fit(self, X, y): |
| 55 | + """Fit the model using cross-validation.""" |
| 56 | + if not hasattr(self.penalty, "alpha"): |
| 57 | + raise ValueError("'penalty' must expose an 'alpha' hyper-parameter.") |
| 58 | + X, y = np.asarray(X), np.asarray(y) |
| 59 | + n, p = X.shape |
| 60 | + rng = np.random.RandomState(self.random_state) |
| 61 | + |
| 62 | + if self.alphas is not None: |
| 63 | + alphas = np.sort(self.alphas)[::-1] |
| 64 | + else: |
| 65 | + alpha_max = np.max(np.abs(X.T @ y)) / n |
| 66 | + alphas = np.logspace( |
| 67 | + np.log10(alpha_max), |
| 68 | + np.log10(alpha_max * self.eps), |
| 69 | + self.n_alphas |
| 70 | + )[::-1] |
| 71 | + has_l1_ratio = hasattr(self.penalty, "l1_ratio") |
| 72 | + l1_ratios = [1.] if not has_l1_ratio else np.atleast_1d( |
| 73 | + self.l1_ratio if self.l1_ratio is not None else [1.]) |
| 74 | + |
| 75 | + folds = list(_kfold_split(n, self.cv, rng)) |
| 76 | + n_folds = len(folds) |
| 77 | + |
| 78 | + mse_path = np.empty((len(l1_ratios), len(alphas), n_folds)) |
| 79 | + best_loss = np.inf |
| 80 | + |
| 81 | + def _solve_fold(k, train, test, alpha, l1, w_start): |
| 82 | + pen_kwargs = {k: v for k, v in self.penalty.__dict__.items() |
| 83 | + if k not in ("alpha", "l1_ratio")} |
| 84 | + if has_l1_ratio: |
| 85 | + pen_kwargs['l1_ratio'] = l1 |
| 86 | + pen = type(self.penalty)(alpha=alpha, **pen_kwargs) |
| 87 | + |
| 88 | + kw = dict(X=X[train], y=y[train], datafit=self.datafit, penalty=pen) |
| 89 | + if 'w' in self.solver.solve.__code__.co_varnames: |
| 90 | + kw['w'] = w_start |
| 91 | + w = self.solver.solve(**kw) |
| 92 | + w = w[0] if isinstance(w, tuple) else w |
| 93 | + |
| 94 | + coef, intercept = (w[:p], w[p]) if w.size == p + 1 else (w, 0.0) |
| 95 | + |
| 96 | + y_pred = X[test] @ coef + intercept |
| 97 | + return w, self._score(y[test], y_pred) |
| 98 | + |
| 99 | + for idx_ratio, l1_ratio in enumerate(l1_ratios): |
| 100 | + warm_start = [None] * n_folds |
| 101 | + |
| 102 | + for idx_alpha, alpha in enumerate(alphas): |
| 103 | + fold_results = Parallel(self.n_jobs)( |
| 104 | + delayed(_solve_fold)(k, tr, te, alpha, l1_ratio, warm_start[k]) |
| 105 | + for k, (tr, te) in enumerate(folds) |
| 106 | + ) |
| 107 | + |
| 108 | + for k, (w_fold, loss_fold) in enumerate(fold_results): |
| 109 | + warm_start[k] = w_fold |
| 110 | + mse_path[idx_ratio, idx_alpha, k] = loss_fold |
| 111 | + |
| 112 | + mean_loss = np.mean(mse_path[idx_ratio, idx_alpha]) |
| 113 | + if mean_loss < best_loss: |
| 114 | + best_loss = mean_loss |
| 115 | + self.alpha_ = float(alpha) |
| 116 | + self.l1_ratio_ = float(l1_ratio) if l1_ratio is not None else None |
| 117 | + |
| 118 | + # Refit on full dataset |
| 119 | + self.penalty.alpha = self.alpha_ |
| 120 | + if hasattr(self.penalty, "l1_ratio"): |
| 121 | + self.penalty.l1_ratio = self.l1_ratio_ |
| 122 | + super().fit(X, y) |
| 123 | + self.alphas_ = alphas |
| 124 | + self.mse_path_ = mse_path |
| 125 | + return self |
| 126 | + |
| 127 | + def predict(self, X): |
| 128 | + """Predict using the linear model.""" |
| 129 | + X = np.asarray(X) |
| 130 | + if isinstance(self.datafit, (Logistic, QuadraticSVC)): |
| 131 | + return (X @ self.coef_ + self.intercept_ > 0).astype(int) |
| 132 | + return X @ self.coef_ + self.intercept_ |
| 133 | + |
| 134 | + def predict_proba(self, X): |
| 135 | + """Probability estimates for classification tasks.""" |
| 136 | + if not isinstance(self.datafit, (Logistic, QuadraticSVC)): |
| 137 | + raise AttributeError( |
| 138 | + "predict_proba is only available for classification tasks" |
| 139 | + ) |
| 140 | + X = np.asarray(X) |
| 141 | + decision = X @ self.coef_ + self.intercept_ |
| 142 | + decision_2d = np.c_[-decision, decision] |
| 143 | + return softmax(decision_2d, copy=False) |
| 144 | + |
| 145 | + def score(self, X, y): |
| 146 | + """Return a 'higher = better' performance metric.""" |
| 147 | + return -self._score(np.asarray(y), self.predict(X)) |
0 commit comments