@@ -35,16 +35,16 @@ The estimators follow the scikit-learn API, come with automated parallel cross-v
35
35
Documentation
36
36
=============
37
37
38
- Please visit https://mathurinm.github.io /skglm/ for the latest version
38
+ Please visit https://contrib.scikit-learn.org /skglm/ for the latest version
39
39
of the documentation.
40
40
41
41
42
42
Install and work with the development version
43
43
=============================================
44
44
45
- First clone the repository available at https://github.com/mathurinm /skglm::
45
+ First clone the repository available at https://github.com/scikit-learn-contrib /skglm::
46
46
47
- $ git clone https://github.com/mathurinm /skglm.git
47
+ $ git clone https://github.com/scikit-learn-contrib /skglm.git
48
48
$ cd skglm/
49
49
50
50
Then, install the package with::
@@ -62,7 +62,7 @@ and it should not give any error message.
62
62
Demos & Examples
63
63
================
64
64
65
- In the `example section <https://mathurinm.github.io /skglm/auto_examples/index.html >`__ of the documentation,
65
+ In the `example section <https://contrib.scikit-learn.org /skglm/auto_examples/index.html >`__ of the documentation,
66
66
you will find numerous examples on real-life datasets,
67
67
timing comparison with other estimators, easy and fast ways to perform cross-validation, etc.
68
68
@@ -94,5 +94,5 @@ ArXiv links:
94
94
95
95
- https://arxiv.org/pdf/2204.07826.pdf
96
96
97
- .. |image0 | image :: https://github.com/mathurinm /skglm/workflows/pytest/badge.svg
98
- :target: https://github.com/mathurinm /skglm/actions?query=workflow%3Abuild
97
+ .. |image0 | image :: https://github.com/scikit-learn-contrib /skglm/workflows/pytest/badge.svg
98
+ :target: https://github.com/scikit-learn-contrib /skglm/actions?query=workflow%3Abuild
0 commit comments