2424from skglm .penalties import (L1 , WeightedL1 , L1_plus_L2 , L2 , WeightedGroupL2 ,
2525 MCPenalty , WeightedMCPenalty , IndicatorBox , L2_1 )
2626from skglm .utils .data import grp_converter
27+ from sklearn .utils .validation import validate_data
2728
2829
2930def _glm_fit (X , y , model , datafit , penalty , solver ):
@@ -50,8 +51,8 @@ def _glm_fit(X, y, model, datafit, penalty, solver):
5051 accept_sparse = 'csc' , copy = fit_intercept )
5152 check_y_params = dict (ensure_2d = False , order = 'F' )
5253
53- X , y = model . _validate_data (
54- X , y , validate_separately = (check_X_params , check_y_params ))
54+ X , y = validate_data (
55+ model , X , y , validate_separately = (check_X_params , check_y_params ))
5556 X = check_array (X , 'csc' , dtype = [np .float64 , np .float32 ],
5657 order = 'F' , copy = False , accept_large_sparse = False )
5758 y = check_array (y , 'csc' , dtype = X .dtype .type , order = 'F' , copy = False ,
@@ -1489,7 +1490,7 @@ def fit(self, X, Y):
14891490 accept_sparse = 'csc' ,
14901491 copy = self .copy_X and self .fit_intercept )
14911492 check_Y_params = dict (ensure_2d = False , order = 'F' )
1492- X , Y = self . _validate_data ( X , Y , validate_separately = (check_X_params ,
1493+ X , Y = validate_data ( self , X , Y , validate_separately = (check_X_params ,
14931494 check_Y_params ))
14941495 Y = Y .astype (X .dtype )
14951496
0 commit comments