24
24
from skglm .penalties import (L1 , WeightedL1 , L1_plus_L2 , L2 , WeightedGroupL2 ,
25
25
MCPenalty , WeightedMCPenalty , IndicatorBox , L2_1 )
26
26
from skglm .utils .data import grp_converter
27
+ from sklearn .utils .validation import validate_data
27
28
28
29
29
30
def _glm_fit (X , y , model , datafit , penalty , solver ):
@@ -50,8 +51,8 @@ def _glm_fit(X, y, model, datafit, penalty, solver):
50
51
accept_sparse = 'csc' , copy = fit_intercept )
51
52
check_y_params = dict (ensure_2d = False , order = 'F' )
52
53
53
- X , y = model . _validate_data (
54
- X , y , validate_separately = (check_X_params , check_y_params ))
54
+ X , y = validate_data (
55
+ model , X , y , validate_separately = (check_X_params , check_y_params ))
55
56
X = check_array (X , 'csc' , dtype = [np .float64 , np .float32 ],
56
57
order = 'F' , copy = False , accept_large_sparse = False )
57
58
y = check_array (y , 'csc' , dtype = X .dtype .type , order = 'F' , copy = False ,
@@ -1489,7 +1490,7 @@ def fit(self, X, Y):
1489
1490
accept_sparse = 'csc' ,
1490
1491
copy = self .copy_X and self .fit_intercept )
1491
1492
check_Y_params = dict (ensure_2d = False , order = 'F' )
1492
- X , Y = self . _validate_data ( X , Y , validate_separately = (check_X_params ,
1493
+ X , Y = validate_data ( self , X , Y , validate_separately = (check_X_params ,
1493
1494
check_Y_params ))
1494
1495
Y = Y .astype (X .dtype )
1495
1496
0 commit comments