|
| 1 | +from time import time |
| 2 | +import numpy as np |
| 3 | +from numpy.linalg import norm |
| 4 | +from numba import njit |
| 5 | +from celer import Lasso, GroupLasso |
| 6 | +from benchopt.datasets.simulated import make_correlated_data |
| 7 | +from skglm.utils import BST, ST |
| 8 | + |
| 9 | + |
| 10 | +def _grp_converter(groups, n_features): |
| 11 | + if isinstance(groups, int): |
| 12 | + grp_size = groups |
| 13 | + if n_features % grp_size != 0: |
| 14 | + raise ValueError("n_features (%d) is not a multiple of the desired" |
| 15 | + " group size (%d)" % (n_features, grp_size)) |
| 16 | + n_groups = n_features // grp_size |
| 17 | + grp_ptr = grp_size * np.arange(n_groups + 1) |
| 18 | + grp_indices = np.arange(n_features) |
| 19 | + elif isinstance(groups, list) and isinstance(groups[0], int): |
| 20 | + grp_indices = np.arange(n_features).astype(np.int32) |
| 21 | + grp_ptr = np.cumsum(np.hstack([[0], groups])) |
| 22 | + elif isinstance(groups, list) and isinstance(groups[0], list): |
| 23 | + grp_sizes = np.array([len(ls) for ls in groups]) |
| 24 | + grp_ptr = np.cumsum(np.hstack([[0], grp_sizes])) |
| 25 | + grp_indices = np.array([idx for grp in groups for idx in grp]) |
| 26 | + else: |
| 27 | + raise ValueError("Unsupported group format.") |
| 28 | + return grp_ptr.astype(np.int32), grp_indices.astype(np.int32) |
| 29 | + |
| 30 | + |
| 31 | +@njit |
| 32 | +def primal(alpha, y, X, w): |
| 33 | + r = y - X @ w |
| 34 | + p_obj = (r @ r) / (2 * len(y)) |
| 35 | + return p_obj + alpha * np.sum(np.abs(w)) |
| 36 | + |
| 37 | + |
| 38 | +@njit |
| 39 | +def primal_grp(alpha, y, X, w, grp_ptr, grp_indices): |
| 40 | + r = y - X @ w |
| 41 | + p_obj = (r @ r) / (2 * len(y)) |
| 42 | + for g in range(len(grp_ptr) - 1): |
| 43 | + w_g = w[grp_indices[grp_ptr[g]:grp_ptr[g + 1]]] |
| 44 | + p_obj += alpha * norm(w_g, ord=2) |
| 45 | + return p_obj |
| 46 | + |
| 47 | + |
| 48 | +@njit |
| 49 | +def cd_epoch(X, G, grads, w, alpha, lipschitz): |
| 50 | + n_features = X.shape[1] |
| 51 | + for j in range(n_features): |
| 52 | + if lipschitz[j] == 0.: |
| 53 | + continue |
| 54 | + old_w_j = w[j] |
| 55 | + w[j] = ST(w[j] + grads[j] / lipschitz[j], alpha / lipschitz[j]) |
| 56 | + if old_w_j != w[j]: |
| 57 | + grads += G[j, :] * (old_w_j - w[j]) / len(X) |
| 58 | + |
| 59 | + |
| 60 | +@njit |
| 61 | +def bcd_epoch(X, G, grads, w, alpha, lipschitz, grp_indices, grp_ptr): |
| 62 | + n_groups = len(grp_ptr) - 1 |
| 63 | + for g in range(n_groups): |
| 64 | + if lipschitz[g] == 0.: |
| 65 | + continue |
| 66 | + idx = grp_indices[grp_ptr[g]:grp_ptr[g + 1]] |
| 67 | + old_w_g = w[idx].copy() |
| 68 | + w[idx] = BST(w[idx] + grads[idx] / lipschitz[g], alpha / lipschitz[g]) |
| 69 | + diff = old_w_g - w[idx] |
| 70 | + if np.any(diff != 0.): |
| 71 | + grads += diff @ G[idx, :] / len(X) |
| 72 | + |
| 73 | + |
| 74 | +def lasso(X, y, alpha, max_iter, tol, check_freq=10): |
| 75 | + p_obj_prev = np.inf |
| 76 | + n_features = X.shape[1] |
| 77 | + # Initialization |
| 78 | + grads = X.T @ y / len(y) |
| 79 | + G = X.T @ X |
| 80 | + lipschitz = np.zeros(n_features, dtype=X.dtype) |
| 81 | + for j in range(n_features): |
| 82 | + lipschitz[j] = (X[:, j] ** 2).sum() / len(y) |
| 83 | + w = np.zeros(n_features) |
| 84 | + # CD |
| 85 | + for n_iter in range(max_iter): |
| 86 | + cd_epoch(X, G, grads, w, alpha, lipschitz) |
| 87 | + if n_iter % check_freq == 0: |
| 88 | + p_obj = primal(alpha, y, X, w) |
| 89 | + if p_obj_prev - p_obj < tol: |
| 90 | + print("Convergence reached!") |
| 91 | + break |
| 92 | + print(f"iter {n_iter} :: p_obj {p_obj}") |
| 93 | + p_obj_prev = p_obj |
| 94 | + return w |
| 95 | + |
| 96 | + |
| 97 | +def group_lasso(X, y, alpha, groups, max_iter, tol, check_freq=50): |
| 98 | + p_obj_prev = np.inf |
| 99 | + n_features = X.shape[1] |
| 100 | + grp_ptr, grp_indices = _grp_converter(groups, X.shape[1]) |
| 101 | + n_groups = len(grp_ptr) - 1 |
| 102 | + # Initialization |
| 103 | + grads = X.T @ y / len(y) |
| 104 | + G = X.T @ X |
| 105 | + lipschitz = np.zeros(n_groups, dtype=X.dtype) |
| 106 | + for g in range(n_groups): |
| 107 | + X_g = X[:, grp_indices[grp_ptr[g]:grp_ptr[g + 1]]] |
| 108 | + lipschitz[g] = norm(X_g, ord=2) ** 2 / len(y) |
| 109 | + w = np.zeros(n_features) |
| 110 | + # BCD |
| 111 | + for n_iter in range(max_iter): |
| 112 | + bcd_epoch(X, G, grads, w, alpha, lipschitz, grp_indices, grp_ptr) |
| 113 | + if n_iter % check_freq == 0: |
| 114 | + p_obj = primal_grp(alpha, y, X, w, grp_ptr, grp_indices) |
| 115 | + if p_obj_prev - p_obj < tol: |
| 116 | + print("Convergence reached!") |
| 117 | + break |
| 118 | + print(f"iter {n_iter} :: p_obj {p_obj}") |
| 119 | + p_obj_prev = p_obj |
| 120 | + return w |
| 121 | + |
| 122 | + |
| 123 | +n_samples, n_features = 1_000_000, 300 |
| 124 | +X, y, w_star = make_correlated_data( |
| 125 | + n_samples=n_samples, n_features=n_features, random_state=0) |
| 126 | +alpha_max = norm(X.T @ y, ord=np.inf) |
| 127 | + |
| 128 | +# Hyperparameters |
| 129 | +max_iter = 1000 |
| 130 | +tol = 1e-8 |
| 131 | +reg = 0.1 |
| 132 | +group_size = 3 |
| 133 | + |
| 134 | +alpha = alpha_max * reg / n_samples |
| 135 | + |
| 136 | +# Lasso |
| 137 | +print("#" * 15) |
| 138 | +print("Lasso") |
| 139 | +print("#" * 15) |
| 140 | +start = time() |
| 141 | +w = lasso(X, y, alpha, max_iter, tol) |
| 142 | +gram_lasso_time = time() - start |
| 143 | +clf_sk = Lasso(alpha, tol=tol, fit_intercept=False) |
| 144 | +start = time() |
| 145 | +clf_sk.fit(X, y) |
| 146 | +celer_lasso_time = time() - start |
| 147 | +np.testing.assert_allclose(w, clf_sk.coef_, rtol=1e-5) |
| 148 | + |
| 149 | +print("\n") |
| 150 | +print("Celer: %.2f" % celer_lasso_time) |
| 151 | +print("Gram: %.2f" % gram_lasso_time) |
| 152 | +print("\n") |
| 153 | + |
| 154 | +# Group Lasso |
| 155 | +print("#" * 15) |
| 156 | +print("Group Lasso") |
| 157 | +print("#" * 15) |
| 158 | +start = time() |
| 159 | +w = group_lasso(X, y, alpha, group_size, max_iter, tol) |
| 160 | +gram_group_lasso_time = time() - start |
| 161 | +clf_celer = GroupLasso(group_size, alpha, tol=tol, fit_intercept=False) |
| 162 | +start = time() |
| 163 | +clf_celer.fit(X, y) |
| 164 | +celer_group_lasso_time = time() - start |
| 165 | +np.testing.assert_allclose(w, clf_celer.coef_, rtol=1e-1) |
| 166 | + |
| 167 | +print("\n") |
| 168 | +print("Celer: %.2f" % celer_group_lasso_time) |
| 169 | +print("Gram: %.2f" % gram_group_lasso_time) |
| 170 | +print("\n") |
0 commit comments