Skip to content

Commit d25d9fd

Browse files
committed
no scale
1 parent 4facf24 commit d25d9fd

File tree

2 files changed

+6
-5
lines changed

2 files changed

+6
-5
lines changed

debug.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,8 @@ def generate_dummy_data(n_samples=1000, n_features=10, noise=0.1):
1818
datafit = Pinball(0.5)
1919
penalty = L1(alpha=0.1)
2020
solver = PDCD_WS(
21-
max_iter=10,
22-
max_epochs=100,
21+
max_iter=50,
22+
max_epochs=500,
2323
tol=1e-2,
2424
warm_start=False,
2525
verbose=1,
@@ -33,10 +33,11 @@ def generate_dummy_data(n_samples=1000, n_features=10, noise=0.1):
3333

3434
X, y = generate_dummy_data(
3535
n_samples=1000, # if this is reduced to 100 samples, it converges
36-
n_features=10,
36+
n_features=11,
3737
)
3838
# y -= y.mean()
3939
# y += 0.1
40+
y /= 10
4041
scaler = StandardScaler()
4142
X_scaled = scaler.fit_transform(X)
4243

skglm/experimental/pdcd_ws.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -102,8 +102,8 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
102102
# Despite violating the conditions mentioned in [1]
103103
# this choice of steps yield in practice a convergent algorithm
104104
# with better speed of convergence
105-
dual_step = 1 / norm(X, ord=2) / 10
106-
primal_steps = 1 / norm(X, axis=0, ord=2) / 10
105+
dual_step = 1 / norm(X, ord=2)
106+
primal_steps = 1 / norm(X, axis=0, ord=2)
107107

108108
# primal vars
109109
w = np.zeros(n_features) if w_init is None else w_init

0 commit comments

Comments
 (0)