@@ -101,7 +101,7 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
101101 # init steps
102102 # choose steps to verify condition: Assumption 2.1 e)
103103 scale = np .sqrt (2 * n_features )
104- dual_steps = 1 / (norm (X , ord = 2 ) * scale )
104+ dual_step = 1 / (norm (X , ord = 2 ) * scale )
105105 primal_steps = 1 / (norm (X , axis = 0 , ord = 2 ) * scale )
106106
107107 # NOTE: primal and dual steps verify condition on steps when multiplied/divided
@@ -110,10 +110,10 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
110110 # in the space with highest number of variable
111111 ratio = n_samples / n_features
112112 if n_samples > n_features :
113- dual_steps *= ratio
113+ dual_step *= ratio
114114 primal_steps /= ratio
115115 else :
116- dual_steps /= ratio
116+ dual_step /= ratio
117117 primal_steps *= ratio
118118
119119 # primal vars
@@ -136,7 +136,7 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
136136
137137 # check convergence using fixed-point criteria on both dual and primal
138138 opts_primal = _scores_primal (X , w , z , penalty , primal_steps , all_features )
139- opt_dual = _score_dual (y , z , Xw , datafit , dual_steps )
139+ opt_dual = _score_dual (y , z , Xw , datafit , dual_step )
140140
141141 stop_crit = max (max (opts_primal ), opt_dual )
142142
@@ -161,7 +161,7 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
161161 # inplace update of w, Xw, z, z_bar
162162 PDCD_WS ._solve_subproblem (
163163 y , X , w , Xw , z , z_bar , datafit , penalty ,
164- primal_steps , dual_steps , ws , self .max_epochs , tol_in = 0.3 * stop_crit , verbose = self .verbose - 1 )
164+ primal_steps , dual_step , ws , self .max_epochs , tol_in = 0.3 * stop_crit , verbose = self .verbose - 1 )
165165
166166 current_p_obj = datafit .value (y , w , Xw ) + penalty .value (w )
167167 p_objs .append (current_p_obj )
@@ -179,7 +179,7 @@ def _solve(self, X, y, datafit, penalty, w_init=None, Xw_init=None):
179179 @njit
180180 def _solve_subproblem (
181181 y , X , w , Xw , z , z_bar , datafit , penalty , primal_steps ,
182- dual_steps , ws , max_epochs , tol_in , verbose ):
182+ dual_step , ws , max_epochs , tol_in , verbose ):
183183 n_features = X .shape [1 ]
184184
185185 for epoch in range (max_epochs ):
@@ -198,14 +198,14 @@ def _solve_subproblem(
198198 Xw += delta_w_j * X [:, j ]
199199
200200 # update dual
201- z_bar [:] = datafit .prox_conjugate (z + dual_steps * Xw ,
202- dual_steps , y )
201+ z_bar [:] = datafit .prox_conjugate (z + dual_step * Xw ,
202+ dual_step , y )
203203 z += (z_bar - z ) / n_features
204204
205205 # check convergence using fixed-point criteria on both dual and primal
206206 if epoch % 1 == 0 :
207207 opts_primal_in = _scores_primal (X , w , z , penalty , primal_steps , ws )
208- opt_dual_in = _score_dual (y , z , Xw , datafit , dual_steps )
208+ opt_dual_in = _score_dual (y , z , Xw , datafit , dual_step )
209209
210210 stop_crit_in = max (max (opts_primal_in ), opt_dual_in )
211211 # if verbose:
@@ -241,7 +241,7 @@ def _scores_primal(X, w, z, penalty, primal_steps, ws):
241241
242242
243243@njit
244- def _score_dual (y , z , Xw , datafit , dual_steps ):
245- next_z = datafit .prox_conjugate (z + dual_steps * Xw ,
246- dual_steps , y )
244+ def _score_dual (y , z , Xw , datafit , dual_step ):
245+ next_z = datafit .prox_conjugate (z + dual_step * Xw ,
246+ dual_step , y )
247247 return norm (z - next_z , ord = np .inf )
0 commit comments