Skip to content
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions doc/changes/0.5.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,9 @@

Version 0.5 (in progress)
-------------------------
- Add support for fitting an intercept in :ref:`SqrtLasso <skglm.experimental.sqrt_lasso.SqrtLasso>` (PR: :gh:`298`)
- Add experimental :ref:`QuantileHuber <skglm.experimental.quantile_huber.QuantileHuber>` and :ref:`SmoothQuantileRegressor <skglm.experimental.quantile_huber.SmoothQuantileRegressor>` for quantile regression, and an example script (PR: :gh:`312`).
- Add :ref:`GeneralizedLinearEstimatorCV <skglm.cv.GeneralizedLinearEstimatorCV>` for cross-validation with automatic parameter selection for L1 and elastic-net penalties (PR: :gh:`299`)
- Add :class:`skglm.datafits.group.PoissonGroup` datafit for group-structured Poisson regression. (PR: :gh:`317`)
- Add :ref:`GraphicalLasso <skglm.covariance.GraphicalLasso>` for sparse inverse covariance estimation with both primal and dual algorithms
- Add :ref:`AdaptiveGraphicalLasso <skglm.covariance.AdaptiveGraphicalLasso>` for non-convex penalty variations using iterative reweighting strategy
- Add support for fitting an intercept in :ref:`SqrtLasso <skglm.experimental.SqrtLasso>` (PR: :gh:`298`)
- Add experimental :ref:`QuantileHuber <skglm.experimental.QuantileHuber>` and :ref:`SmoothQuantileRegressor <skglm.experimental.SmoothQuantileRegressor>` for quantile regression (PR: :gh:`312`).
- Add :ref:`GeneralizedLinearEstimatorCV <skglm.GeneralizedLinearEstimatorCV>` for cross-validation with automatic parameter selection for L1 and elastic-net penalties (PR: :gh:`299`)
- Add :ref:`PoissonGroup <skglm.datafits.PoissonGroup>` datafit for group-structured Poisson regression. (PR: :gh:`317`)
- Add :ref:`GraphicalLasso <skglm.GraphicalLasso>` for sparse inverse covariance estimation with both primal and dual algorithms (PR: :gh:`280`)
- Add :ref:`AdaptiveGraphicalLasso <skglm.AdaptiveGraphicalLasso>` for non-convex penalty variations using iterative reweighting strategy (PR: :gh:`280`)