You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.rst
+18-5Lines changed: 18 additions & 5 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -382,7 +382,8 @@ Feature selection and other supervised transformations
382
382
Working with sparse features
383
383
****************************
384
384
385
-
A ``DataFrameMapper`` will return a dense feature array by default. Setting ``sparse=True`` in the mapper will return a sparse array whenever any of the extracted features is sparse. Example:
385
+
A ``DataFrameMapper`` will return a dense feature array by default. Setting ``sparse=True`` in the mapper will return
386
+
a sparse array whenever any of the extracted features is sparse. Example:
386
387
387
388
>>> mapper5 = DataFrameMapper([
388
389
... ('pet', CountVectorizer()),
@@ -393,11 +394,12 @@ A ``DataFrameMapper`` will return a dense feature array by default. Setting ``sp
393
394
The stacking of the sparse features is done without ever densifying them.
394
395
395
396
396
-
Using Numerical Transformer
397
+
Using ``NumericalTransformer``
397
398
****************************
398
399
399
-
While you can use FunctionTransformation to generate artibtrary transformer but they cannot not serialized (pickled).
400
-
NumericalTransformer takes function name as a string parameter and hence can be easily serialized.
400
+
While you can use ``FunctionTransformation`` to generate arbitrary transformers, it can present serialization issues
401
+
when pickling. Use ``NumericalTransformer`` instead, which takes the function name as a string parameter and hence
402
+
can be easily serialized.
401
403
402
404
>>> from sklearn_pandas import NumericalTransformer
403
405
>>> mapper5 = DataFrameMapper([
@@ -415,9 +417,20 @@ NumericalTransformer takes function name as a string parameter and hence can be
415
417
416
418
417
419
418
-
419
420
Changelog
420
421
---------
422
+
2.0.0 (2020-08-01)
423
+
******************
424
+
* Deprecated support for Python < 3.6.
425
+
* Deprecated support for old versions of scikit-learn, pandas and numpy. Please check setup.py for minimum requirement.
426
+
* Removed CategoricalImputer, cross_val_score and GridSearchCV. All these functionality now exists as part of
427
+
scikit-learn. Please use SimpleImputer instead of CategoricalImputer. Also
428
+
Cross validation from sklearn now supports dataframe so we don't need to use cross validation wrapper provided over
429
+
here.
430
+
* Added ``NumericalTransformer`` for common numerical transformations. Currently it implements log and log1p
431
+
transformation.
432
+
* Added prefix and suffix options. See examples above. These are usually helpful when using gen_features.
0 commit comments