Skip to content

Commit ceae2f9

Browse files
authored
small changes to ReadMe
1 parent 87ca42b commit ceae2f9

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ Please cite it if you use the code in this repository:
2222
## Abstract
2323
The movements of individuals within and among cities influence critical aspects of our society, such as well-being, the spreading of epidemics, and the quality of the environment. When information about mobility flows is not available for a particular region of interest, we must rely on mathematical models to generate them.
2424

25-
In this work, we propose the **Deep Gravity** model, an effective method to generate flow probabilities that exploits many variables (e.g., land use, road network, transport, food, health facilities) extracted from voluntary geographic data, and uses deep neural networks to discover non-linear relationships between those variables and mobility flows.
25+
**Deep Gravity** is an effective method to generate flow probabilities that exploits many variables (e.g., land use, road network, transport, food, health facilities) extracted from voluntary geographic data, and uses deep neural networks to discover non-linear relationships between those variables and mobility flows.
2626

2727
Our experiments, conducted on mobility flows in England, Italy, and New York State, show that Deep Gravity has good geographic generalization capability, achieving a significant increase in performance (especially in densely populated regions of interest) with respect to the classic gravity model and models that do not use deep neural networks or geographic data. We also show how flows generated by Deep Gravity may be explained in terms of the geographic features using explainable AI techniques.
2828

0 commit comments

Comments
 (0)