+The retrieval augmented generation (RAG) module at OntoAligner is driven by a ``LLMs4OM`` framework, a novel approach for effective ontology alignment using LLMs. This framework utilizes two modules for retrieval and matching, respectively, enhanced by zero-shot prompting across three ontology representations: concept, concept-parent, and concept-children. The ``LLMs4OM`` framework, can match and even surpass the performance of traditional OM systems, particularly in complex matching scenarios. The ``LLMs4OM`` framework (as shown in the following diagram) offers a RAG approach within LLMs for OM. LLMs4OM uses :math:`O_{source}` as query :math:`Q(O_{source})` to retrieve possible matches for for any :math:`C_s \in C_{source}` from :math:`C_{target} \in O_{target}`. Where, :math:`C_{target}` is stored in the knowledge base :math:`KB(O_{target})`. Later, :math:`C_{s}` and obtained :math:`C_t \in C_{target}` are used to query the LLM to check whether the :math:`(C_s, C_t)` pair is a match. As shown in above diagram, the framework comprises four main steps: 1) Concept representation, 2) Retriever model, 3) LLM, and 4) Post-processing. But within the OntoAligner we we adapted the workflow into a parser, encoder, alignment, post-processing, evaluate, and export steps.
0 commit comments