Skip to content

Commit 492647b

Browse files
committed
Updated Readme and Documentation
1 parent 8afe780 commit 492647b

File tree

4 files changed

+17
-14
lines changed

4 files changed

+17
-14
lines changed

README.md

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,10 @@ This is an open-source implementation of Schema-Miner<sup>pro</sup>.
2121

2222
## 📋 Schema-miner<sup>pro</sup> Overview
2323

24-
Schema-Miner is a novel framework that leverages Large Language Models (LLMs) and continuous human feedback to automate and enhance the schema mining task. Through an iterative process, the framework uses LLMs to extract and organize properties from unstructured text and refines schemas with expert input. Schema-Miner<sup>pro</sup> extends Schema-Miner with an ontology grounding component powered by agentic AI. It performs multi-step reasoning using lexical heuristics and semantic similarity search, and grounds schema elements in formal ontologies (e.g., [QUDT](https://www.qudt.org/pages/HomePage.html)). Comprehensive documentation for Schema-Miner Pro, including detailed guides and examples, is available at [schema-miner.readthedocs.io](https://schema-miner.readthedocs.io/en/latest/).
24+
Schema-Miner is a novel framework that leverages Large Language Models (LLMs) and continuous human feedback to automate and enhance the schema mining task. Through an iterative process, the framework uses LLMs to extract and organize properties from unstructured text and refines schemas with expert input [ESWC Proceedings](https://link.springer.com/chapter/10.1007/978-3-031-94578-6_14). Schema-Miner<sup>pro</sup> extends Schema-Miner with an ontology grounding component powered by agentic AI. It performs multi-step reasoning using lexical heuristics and semantic similarity search, and grounds schema elements in formal ontologies (e.g., [QUDT](https://www.qudt.org/pages/HomePage.html)). Comprehensive documentation for Schema-Miner Pro, including detailed guides and examples, is available at [schema-miner.readthedocs.io](https://schema-miner.readthedocs.io/en/latest/).
25+
26+
> [!NOTE]
27+
> **Schema-Miner** implements a three-stage pipeline for schema discovery and refinement without ontology grounding (see Figure 1). **Schema-Miner Pro** extends this pipeline by grounding the discovered schemas to formal ontologies.
2528
2629
<p align="center">
2730
<img src="https://raw.githubusercontent.com/sciknoworg/schema-miner/refs/heads/main/assets/LLM4SchemaMining%20-%20Workflow%20design.svg" height="300">
@@ -211,9 +214,9 @@ logging.info(f'{ProcessConfig.Process_name} Schema:\n{json.dumps(schema, indent
211214

212215
## 📚 Citing this Work
213216

214-
If you use this repository in your research or applications, please cite the appropriate paper(s):
217+
If you use this repository in your research or applications, please cite the following paper(s):
215218

216-
- Schema-Miner (schema discovery/mining only):
219+
- **LLMs4SchemaDiscovery: A Human-in-the-Loop Workflow for Scientific Schema Mining with Large Language Models**:
217220
> Sameer Sadruddin, Jennifer D’Souza, Eleni Poupaki, Alex Watkins, Hamed Babaei Giglou, Anisa Rula, Bora Karasulu, Sören Auer, Adrie Mackus, and Erwin Kessels.
218221
> **LLMs4SchemaDiscovery: A Human-in-the-Loop Workflow for Scientific Schema Mining with Large Language Models.**
219222
> In *The Semantic Web – ESWC 2025*, Springer, Cham, pp. 244–261.
@@ -233,7 +236,7 @@ If you use this repository in your research or applications, please cite the app
233236
isbn = {978-3-031-94578-6},
234237
}
235238
```
236-
- Schema-Miner<sup>pro</sup> (schema mining with QUDT grounding / ontology grounding):
239+
- **SCHEMA-MINER<sup>pro</sup>: Agentic AI for Ontology Grounding over LLM-Discovered Scientific Schemas in a Human-in-the-Loop Workflow**
237240
> Sameer Sadruddin, Jennifer D’Souza, Eleni Poupaki, Alex Watkins, Bora Karasulu, Sören Auer, Adrie Mackus, and Erwin Kessels.
238241
> **SCHEMA-MINER<sup>pro</sup>: Agentic AI for Ontology Grounding over LLM-Discovered Scientific Schemas in a Human-in-the-Loop Workflow.**
239242
> In *Semantic Web Journal.*

README_PYPI.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
<h3 align="center">SCHEMA-MINER<sup>pro</sup>: Agentic AI for Ontology Grounding over LLM-Discovered Scientific Schemas in a Human-in-the-Loop Workflow</h3>
1919

20-
Schema-Miner is an open-source framework for scientific schema mining. It combines Large Language Models (LLMs) with human-in-the-loop refinement to extract, and semantically ground schema properties from unstructured text. Schema-Miner Pro extends this framework with an automated ontology-grounding component, aligning the schema with formal ontologies (e.g., [QUDT](https://www.qudt.org/pages/HomePage.html)). Documentation and usage guides are available at [schema-miner.readthedocs.io](https://schema-miner.readthedocs.io/en/latest/).
20+
Schema-Miner Pro is an open-source framework for scientific schema mining and ontology grounding. It combines Large Language Models (LLMs) with human-in-the-loop refinement to extract and organize schema properties from unstructured text, and extends this process with an automated ontology-grounding component. Documentation and usage guides are available at [schema-miner.readthedocs.io](https://schema-miner.readthedocs.io/en/latest/).
2121

2222
## 🧪 Installation
2323

@@ -56,9 +56,9 @@ For a quick start, see the provided example notebooks highlighting the overall w
5656

5757
## 📚 Citing this Work
5858

59-
If you use this repository in your research or applications, please cite the appropriate paper(s):
59+
If you use this repository in your research or applications, please cite the following paper(s):
6060

61-
- Schema-Miner (schema discovery/mining only):
61+
- **LLMs4SchemaDiscovery: A Human-in-the-Loop Workflow for Scientific Schema Mining with Large Language Models**
6262
> Sameer Sadruddin, Jennifer D’Souza, Eleni Poupaki, Alex Watkins, Hamed Babaei Giglou, Anisa Rula, Bora Karasulu, Sören Auer, Adrie Mackus, and Erwin Kessels.
6363
> **LLMs4SchemaDiscovery: A Human-in-the-Loop Workflow for Scientific Schema Mining with Large Language Models.**
6464
> In *The Semantic Web – ESWC 2025*, Springer, Cham, pp. 244–261.
@@ -78,7 +78,7 @@ If you use this repository in your research or applications, please cite the app
7878
isbn = {978-3-031-94578-6},
7979
}
8080
```
81-
- Schema-Miner<sup>pro</sup> (schema mining with QUDT grounding / ontology grounding):
81+
- **SCHEMA-MINER<sup>pro</sup>: Agentic AI for Ontology Grounding over LLM-Discovered Scientific Schemas in a Human-in-the-Loop Workflow**
8282
> Sameer Sadruddin, Jennifer D’Souza, Eleni Poupaki, Alex Watkins, Bora Karasulu, Sören Auer, Adrie Mackus, and Erwin Kessels.
8383
> **SCHEMA-MINER<sup>pro</sup>: Agentic AI for Ontology Grounding over LLM-Discovered Scientific Schemas in a Human-in-the-Loop Workflow.**
8484
> In *Semantic Web Journal.*

docs/source/index.rst

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -74,10 +74,10 @@ Below is the workflow diagram of Schema-Miner.
7474
Citing this Work
7575
****************
7676

77-
If you use this repository in your research or applications, please cite the appropriate paper(s):
77+
If you use this repository in your research or applications, please cite the following paper(s):
7878

79-
Schema-Miner (schema discovery/mining only):
80-
------------------------------------------------
79+
**LLMs4SchemaDiscovery: A Human-in-the-Loop Workflow for Scientific Schema Mining with Large Language Models**
80+
--------------------------------------------------------------------------------------------------------------
8181

8282
Sameer Sadruddin, Jennifer D’Souza, Eleni Poupaki, Alex Watkins, Hamed Babaei Giglou, Anisa Rula, Bora Karasulu, Sören Auer, Adrie Mackus, and Erwin Kessels.
8383
**LLMs4SchemaDiscovery: A Human-in-the-Loop Workflow for Scientific Schema Mining with Large Language Models.**
@@ -102,8 +102,8 @@ BibTeX
102102
isbn = {978-3-031-94578-6},
103103
}
104104
105-
Schema Miner Pro (schema mining with QUDT grounding / ontology grounding):
106-
------------------------------------------------------------------------------
105+
**SCHEMA-MINERpro: Agentic AI for Ontology Grounding over LLM-Discovered Scientific Schemas in a Human-in-the-Loop Workflow**
106+
-----------------------------------------------------------------------------------------------------------------------------
107107

108108
Sameer Sadruddin, Jennifer D’Souza, Eleni Poupaki, Alex Watkins, Bora Karasulu, Sören Auer, Adrie Mackus, and Erwin Kessels.
109109
**SCHEMA-MINERpro: Agentic AI for Ontology Grounding over LLM-Discovered Scientific Schemas in a Human-in-the-Loop Workflow.**

pyproject.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
44

55
[project]
66
name = "schema_miner"
7-
version = "2.0.1"
7+
version = "2.0.2"
88
description = "A Human-in-the-Loop Workflow for Scientific Schema Mining with Large Language Models"
99
authors = [
1010
{name = "Sameer Sadruddin", email = "[email protected]"},

0 commit comments

Comments
 (0)