@@ -1685,7 +1685,7 @@ class MatrixVariable(MatrixExpr):
16851685
16861686 """
16871687 vtypes = np.empty(self .shape, dtype = object )
1688- for idx in np.ndindex(self ):
1688+ for idx in np.ndindex(self .shape ):
16891689 vtypes[idx] = self [idx].vtype()
16901690 return vtypes
16911691
@@ -1700,7 +1700,7 @@ class MatrixVariable(MatrixExpr):
17001700
17011701 """
17021702 in_lp = np.empty(self .shape, dtype = bool )
1703- for idx in np.ndindex(self ):
1703+ for idx in np.ndindex(self .shape ):
17041704 in_lp[idx] = self [idx].isInLP()
17051705 return in_lp
17061706
@@ -1715,7 +1715,7 @@ class MatrixVariable(MatrixExpr):
17151715 An array of integers. No two should be the same
17161716 """
17171717 indices = np.empty(self .shape, dtype = int )
1718- for idx in np.ndindex(self ):
1718+ for idx in np.ndindex(self .shape ):
17191719 indices[idx] = self [idx].getIndex()
17201720 return indices
17211721
@@ -1730,7 +1730,7 @@ class MatrixVariable(MatrixExpr):
17301730 """
17311731
17321732 columns = np.empty(self .shape, dtype = object )
1733- for idx in np.index (self ):
1733+ for idx in np.ndindex (self .shape ):
17341734 columns[idx] = self [idx].getCol()
17351735 return columns
17361736
@@ -1744,7 +1744,7 @@ class MatrixVariable(MatrixExpr):
17441744
17451745 """
17461746 lbs = np.empty(self .shape, dtype = float )
1747- for idx in np.ndindex(self ):
1747+ for idx in np.ndindex(self .shape ):
17481748 lbs[idx] = self [idx].getLbOriginal()
17491749 return lbs
17501750
@@ -1758,7 +1758,7 @@ class MatrixVariable(MatrixExpr):
17581758
17591759 """
17601760 ubs = np.empty(self .shape, dtype = float )
1761- for idx in np.ndindex(self ):
1761+ for idx in np.ndindex(self .shape ):
17621762 ubs[idx] = self [idx].getUbOriginal()
17631763 return ubs
17641764
@@ -1772,7 +1772,7 @@ class MatrixVariable(MatrixExpr):
17721772
17731773 """
17741774 lbs = np.empty(self .shape, dtype = float )
1775- for idx in np.ndindex(self ):
1775+ for idx in np.ndindex(self .shape ):
17761776 lbs[idx] = self [idx].getLbGlobal()
17771777 return lbs
17781778
@@ -1786,7 +1786,7 @@ class MatrixVariable(MatrixExpr):
17861786
17871787 """
17881788 ubs = np.empty(self .shape, dtype = float )
1789- for idx in np.ndindex(self ):
1789+ for idx in np.ndindex(self .shape ):
17901790 ubs[idx] = self [idx].getUbGlobal()
17911791 return ubs
17921792
@@ -1800,7 +1800,7 @@ class MatrixVariable(MatrixExpr):
18001800
18011801 """
18021802 lbs = np.empty(self .shape, dtype = float )
1803- for idx in np.ndindex(self ):
1803+ for idx in np.ndindex(self .shape ):
18041804 lbs[idx] = self [idx].getLbLocal()
18051805 return lbs
18061806
@@ -1814,7 +1814,7 @@ class MatrixVariable(MatrixExpr):
18141814
18151815 """
18161816 ubs = np.empty(self .shape, dtype = float )
1817- for idx in np.ndindex(self ):
1817+ for idx in np.ndindex(self .shape ):
18181818 ubs[idx] = self [idx].getUbLocal()
18191819 return ubs
18201820
@@ -1828,7 +1828,7 @@ class MatrixVariable(MatrixExpr):
18281828
18291829 """
18301830 objs = np.empty(self .shape, dtype = float )
1831- for idx in np.ndindex(self ):
1831+ for idx in np.ndindex(self .shape ):
18321832 objs[idx] = self [idx].getObj()
18331833 return objs
18341834
@@ -1842,7 +1842,7 @@ class MatrixVariable(MatrixExpr):
18421842
18431843 """
18441844 lpsols = np.empty(self .shape, dtype = float )
1845- for idx in np.ndindex(self ):
1845+ for idx in np.ndindex(self .shape ):
18461846 lpsols[idx] = self [idx].getLPSol()
18471847 return lpsols
18481848
@@ -1856,7 +1856,7 @@ class MatrixVariable(MatrixExpr):
18561856
18571857 """
18581858 avgsols = np.empty(self .shape, dtype = float )
1859- for idx in np.ndindex(self ):
1859+ for idx in np.ndindex(self .shape ):
18601860 avgsols[idx] = self [idx].getAvgSol()
18611861 return avgsols
18621862
@@ -1876,7 +1876,7 @@ class MatrixVariable(MatrixExpr):
18761876
18771877 """
18781878 mayround = np.empty(self .shape, dtype = bool )
1879- for idx in np.ndindex(self ):
1879+ for idx in np.ndindex(self .shape ):
18801880 mayround[idx] = self [idx].varMayRound()
18811881 return mayround
18821882
0 commit comments