|
4 | 4 | import numpy as np |
5 | 5 | import pytest |
6 | 6 | import scipp as sc |
| 7 | +from scipp.testing import assert_identical |
7 | 8 |
|
8 | 9 | from ess.reduce.time_of_flight import resample |
9 | 10 |
|
@@ -255,3 +256,147 @@ def test_ensures_last_bin_edge_is_included(self): |
255 | 256 | assert sc.identical(grid, expected) |
256 | 257 | # Test that the maximum value from original data is included in the grid |
257 | 258 | assert grid[-1].value == 5 |
| 259 | + |
| 260 | + |
| 261 | +class TestRebinStrictlyIncreasing: |
| 262 | + """Tests for rebin_strictly_increasing function.""" |
| 263 | + |
| 264 | + def test_basic_functionality(self): |
| 265 | + # Create a data array with a simple time-of-flight coordinate that has two |
| 266 | + # strictly increasing sections |
| 267 | + tof = sc.array(dims=['tof'], values=[1, 2, 3, 2, 3, 4, 5]) |
| 268 | + data = sc.array(dims=['tof'], values=[10, 20, 15, 25, 35, 11]) |
| 269 | + da = sc.DataArray(data=data, coords={'tof': tof}) |
| 270 | + |
| 271 | + result = resample.rebin_strictly_increasing(da, 'tof') |
| 272 | + |
| 273 | + # Check the rebinned result has a regular grid from 1 to 5 |
| 274 | + expected_tof = sc.array(dims=['tof'], values=[1.0, 2, 3, 4, 5]) |
| 275 | + assert sc.identical(result.coords['tof'], expected_tof) |
| 276 | + |
| 277 | + # Check the data values are properly rebinned and combined |
| 278 | + expected_data = sc.array(dims=['tof'], values=[10.0, 20 + 25, 35, 11]) |
| 279 | + assert_identical(result.data, expected_data) |
| 280 | + |
| 281 | + def test_with_different_step_sizes(self): |
| 282 | + # First section has step size 1, second has step size 0.5 |
| 283 | + tof = sc.array(dims=['tof'], values=[1, 2, 4, 3.5, 4, 4.5, 5]) |
| 284 | + data = sc.array(dims=['tof'], values=[10, 20, 15, 25, 35, 45]) |
| 285 | + da = sc.DataArray(data=data, coords={'tof': tof}) |
| 286 | + |
| 287 | + result = resample.rebin_strictly_increasing(da, 'tof') |
| 288 | + |
| 289 | + # Should use step size 1 from the first section (where min value is found) |
| 290 | + expected_tof = sc.array(dims=['tof'], values=[1.0, 2, 3, 4, 5]) |
| 291 | + assert_identical(result.coords['tof'], expected_tof) |
| 292 | + |
| 293 | + def test_with_units(self): |
| 294 | + tof = sc.array(dims=['tof'], values=[1.0, 2.0, 3.0, 2.0, 3.0, 4.0], unit='ms') |
| 295 | + data = sc.array(dims=['tof'], values=[10, 20, 15, 25, 35], unit='counts') |
| 296 | + da = sc.DataArray(data=data, coords={'tof': tof}) |
| 297 | + |
| 298 | + result = resample.rebin_strictly_increasing(da, 'tof') |
| 299 | + |
| 300 | + # Check units are preserved |
| 301 | + assert result.coords['tof'].unit == sc.Unit('ms') |
| 302 | + assert result.data.unit == sc.Unit('counts') |
| 303 | + |
| 304 | + # Check values |
| 305 | + expected_tof = sc.array(dims=['tof'], values=[1.0, 2.0, 3.0, 4.0], unit='ms') |
| 306 | + assert sc.identical(result.coords['tof'], expected_tof) |
| 307 | + |
| 308 | + def test_with_single_increasing_section(self): |
| 309 | + tof = sc.array(dims=['tof'], values=[1, 2, 3, 4, 5, 6]) |
| 310 | + data = sc.array(dims=['tof'], values=[10, 20, 30, 40, 50]) |
| 311 | + da = sc.DataArray(data=data, coords={'tof': tof}) |
| 312 | + |
| 313 | + result = resample.rebin_strictly_increasing(da, 'tof') |
| 314 | + |
| 315 | + # For a single increasing section, should return just that section |
| 316 | + assert sc.identical(result, da) |
| 317 | + |
| 318 | + def test_with_three_increasing_sections(self): |
| 319 | + tof = sc.array(dims=['tof'], values=[1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5]) |
| 320 | + data = sc.array(dims=['tof'], values=[5, 10, 6, 12, 18, 8, 14, 21, 28, 35]) |
| 321 | + da = sc.DataArray(data=data, coords={'tof': tof}) |
| 322 | + |
| 323 | + result = resample.rebin_strictly_increasing(da, 'tof') |
| 324 | + |
| 325 | + expected_tof = sc.array(dims=['tof'], values=[1.0, 2, 3, 4, 5]) |
| 326 | + assert_identical(result.coords['tof'], expected_tof) |
| 327 | + |
| 328 | + # Sum of all three sections properly rebinned |
| 329 | + expected_data = sc.array( |
| 330 | + dims=['tof'], values=[5.0 + 12, 10 + 18 + 21, 8 + 28, 35] |
| 331 | + ) |
| 332 | + assert_identical(result.data, expected_data) |
| 333 | + |
| 334 | + def test_with_nan_values_in_coordinate(self): |
| 335 | + tof = sc.array(dims=['tof'], values=[1, 2, 3, np.nan, 5, 6, 7]) |
| 336 | + data = sc.array(dims=['tof'], values=[10, 20, 40, 50, 60, 70]) |
| 337 | + da = sc.DataArray(data=data, coords={'tof': tof}) |
| 338 | + |
| 339 | + result = resample.rebin_strictly_increasing(da, 'tof') |
| 340 | + |
| 341 | + # Should have two increasing sections: [1,2,3] and [5,6,7] |
| 342 | + expected_tof = sc.array(dims=['tof'], values=[1.0, 2, 3, 4, 5, 6, 7]) |
| 343 | + assert_identical(result.coords['tof'], expected_tof) |
| 344 | + |
| 345 | + # Data should be correctly rebinned, excluding the NaN point |
| 346 | + expected_data = sc.array(dims=['tof'], values=[10.0, 20, 0, 0, 60, 70]) |
| 347 | + assert_identical(result.data, expected_data) |
| 348 | + |
| 349 | + def test_with_no_increasing_sections_raises_error(self): |
| 350 | + tof = sc.array(dims=['tof'], values=[5, 4, 3, 2, 1, 0]) |
| 351 | + data = sc.array(dims=['tof'], values=[10, 20, 30, 40, 50]) |
| 352 | + da = sc.DataArray(data=data, coords={'tof': tof}) |
| 353 | + |
| 354 | + with pytest.raises(ValueError, match="No strictly increasing sections found."): |
| 355 | + resample.rebin_strictly_increasing(da, 'tof') |
| 356 | + |
| 357 | + def test_with_variances(self): |
| 358 | + tof = sc.array(dims=['tof'], values=[1, 2, 3, 2, 3, 4]) |
| 359 | + values = [ |
| 360 | + 10.0, |
| 361 | + 20.0, |
| 362 | + 15.0, |
| 363 | + 25.0, |
| 364 | + 35.0, |
| 365 | + ] # Using float for values to match variances |
| 366 | + variances = [1.0, 2.0, 1.5, 2.5, 3.5] # Float variances |
| 367 | + data = sc.array(dims=['tof'], values=values, variances=variances) |
| 368 | + da = sc.DataArray(data=data, coords={'tof': tof}) |
| 369 | + |
| 370 | + result = resample.rebin_strictly_increasing(da, 'tof') |
| 371 | + |
| 372 | + # Check that variances are properly propagated |
| 373 | + assert result.data.variances is not None |
| 374 | + expected_variances = sc.array(dims=['tof'], values=[1.0, 2.0 + 2.5, 3.5]) |
| 375 | + assert_identical(sc.variances(result.data), expected_variances) |
| 376 | + |
| 377 | + def test_additional_coords_are_dropped(self): |
| 378 | + tof = sc.array(dims=['tof'], values=[1, 2, 3, 2, 3, 4, 5]) |
| 379 | + data = sc.array(dims=['tof'], values=[10, 20, 15, 25, 35, 45]) |
| 380 | + energy = sc.array(dims=['tof'], values=[1.1, 1.2, 1.3, 1.2, 1.4, 1.2]) |
| 381 | + da = sc.DataArray(data=data, coords={'tof': tof, 'energy': energy}) |
| 382 | + |
| 383 | + result = resample.rebin_strictly_increasing(da, 'tof') |
| 384 | + |
| 385 | + # Rebin cannot preserve coords |
| 386 | + assert 'energy' not in result.coords |
| 387 | + |
| 388 | + def test_masks_are_applied(self): |
| 389 | + tof = sc.array(dims=['tof'], values=[1, 2, 3, 2, 3, 4, 5]) |
| 390 | + data = sc.array(dims=['tof'], values=[10, 20, 15, 25, 35, 45]) |
| 391 | + da = sc.DataArray(data=data, coords={'tof': tof}) |
| 392 | + |
| 393 | + baseline = resample.rebin_strictly_increasing(da, 'tof') |
| 394 | + |
| 395 | + # Add a mask |
| 396 | + mask = sc.array(dims=['tof'], values=[False, False, True, False, False, True]) |
| 397 | + da.masks['quality'] = mask |
| 398 | + |
| 399 | + result = resample.rebin_strictly_increasing(da, 'tof') |
| 400 | + # Rebin applies masks |
| 401 | + assert 'quality' not in baseline.masks |
| 402 | + assert result.sum().value < baseline.sum().value |
0 commit comments