|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "0", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Reduction of ESTIA McStas data" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "1", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "This notebook demonstrates how to run the data reduction on the output of McStas simulations of the instrument.\n", |
| 17 | + "\n", |
| 18 | + "Essentially this looks very similar to how one would do data reduction on real data files from the physical instrument,\n", |
| 19 | + "but we replace the default loader with the `load_mcstas_events` provider." |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": null, |
| 25 | + "id": "2", |
| 26 | + "metadata": {}, |
| 27 | + "outputs": [], |
| 28 | + "source": [ |
| 29 | + "#%matplotlib widget\n", |
| 30 | + "import scipp as sc\n", |
| 31 | + "\n", |
| 32 | + "from ess.estia.load import load_mcstas_events\n", |
| 33 | + "from ess.estia.data import estia_mcstas_example, estia_mcstas_groundtruth\n", |
| 34 | + "from ess.estia import EstiaWorkflow\n", |
| 35 | + "from ess.reflectometry.types import *\n", |
| 36 | + "from ess.reflectometry.figures import wavelength_z_figure, wavelength_theta_figure, q_theta_figure" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "markdown", |
| 41 | + "id": "3", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "The Estia reduction workflow is created and we set parameters such as region of interest, wavelengthbins, and q-bins." |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": null, |
| 50 | + "id": "4", |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "\n", |
| 55 | + "wf = EstiaWorkflow()\n", |
| 56 | + "wf.insert(load_mcstas_events)\n", |
| 57 | + "wf[Filename[ReferenceRun]] = estia_mcstas_example('reference')\n", |
| 58 | + "\n", |
| 59 | + "wf[YIndexLimits] = sc.scalar(35), sc.scalar(64)\n", |
| 60 | + "wf[ZIndexLimits] = sc.scalar(0), sc.scalar(14 * 32)\n", |
| 61 | + "wf[BeamDivergenceLimits] = sc.scalar(-0.75, unit='deg'), sc.scalar(0.75, unit='deg')\n", |
| 62 | + "wf[WavelengthBins] = sc.geomspace('wavelength', 3.5, 12, 2001, unit='angstrom')\n", |
| 63 | + "wf[QBins] = 1000\n", |
| 64 | + "\n", |
| 65 | + "# There is no proton current data in the McStas files, here we just add some fake proton current\n", |
| 66 | + "# data to make the workflow run.\n", |
| 67 | + "wf[ProtonCurrent[SampleRun]] = sc.DataArray(\n", |
| 68 | + " sc.array(dims=('time',), values=[]),\n", |
| 69 | + " coords={'time': sc.array(dims=('time',), values=[], unit='s')})\n", |
| 70 | + "wf[ProtonCurrent[ReferenceRun]] = sc.DataArray(\n", |
| 71 | + " sc.array(dims=('time',), values=[]),\n", |
| 72 | + " coords={'time': sc.array(dims=('time',), values=[], unit='s')})\n", |
| 73 | + "\n", |
| 74 | + "\n", |
| 75 | + "def compute_reflectivity_curve_for_mcstas_data(wf, results):\n", |
| 76 | + " R, ref, da = w.compute((ReflectivityOverQ, Reference, ReducibleData[SampleRun])).values()\n", |
| 77 | + " # In the McStas simulation the reference has quite low intensity.\n", |
| 78 | + " # To make the reflectivity curve a bit more clean\n", |
| 79 | + " # we filter out the Q-points where the reference has too large uncertainties.\n", |
| 80 | + " ref = ref.hist(Q=R.coords['Q'])\n", |
| 81 | + " too_large_uncertainty_in_reference = sc.stddevs(ref).data > 0.3 * ref.data\n", |
| 82 | + " R = R.hist()\n", |
| 83 | + " R.data = sc.where(too_large_uncertainty_in_reference, sc.scalar(float('nan'), unit=R.unit), R.data)\n", |
| 84 | + " results[f\"{da.coords['sample_rotation'].value} {da.coords['sample_rotation'].unit}\"] = R\n" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "markdown", |
| 89 | + "id": "5", |
| 90 | + "metadata": {}, |
| 91 | + "source": [ |
| 92 | + "## Ni/Ti multilayer sample\n", |
| 93 | + "\n", |
| 94 | + "Below is a comparison between the reflectivity curve obtained using the reduction workflow and the ground truth reflectivity curve that was used in the McStas simulation.\n", |
| 95 | + "The sample was simulated at different sample rotation settings, each settings produces a separate reflectivity curve covering a higher Q-range, and that is the angle in the legend of the figure." |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "id": "6", |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "results = {}\n", |
| 106 | + "for path in estia_mcstas_example('Ni/Ti-multilayer'):\n", |
| 107 | + " w = wf.copy()\n", |
| 108 | + " w[Filename[SampleRun]] = path\n", |
| 109 | + " compute_reflectivity_curve_for_mcstas_data(w, results)\n", |
| 110 | + "\n", |
| 111 | + "ground_truth = estia_mcstas_groundtruth('Ni/Ti-multilayer')\n", |
| 112 | + "\n", |
| 113 | + "sc.plot({'ground_truth': ground_truth} | results, norm='log', vmin=1e-8)" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "markdown", |
| 118 | + "id": "7", |
| 119 | + "metadata": {}, |
| 120 | + "source": [ |
| 121 | + "Below are a number of figures displaying different projections of the measured intensity distribution." |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "code", |
| 126 | + "execution_count": null, |
| 127 | + "id": "8", |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "results = []\n", |
| 132 | + "for path in estia_mcstas_example('Ni/Ti-multilayer'):\n", |
| 133 | + " w = wf.copy()\n", |
| 134 | + " w[Filename[SampleRun]] = path\n", |
| 135 | + " results.append(w.compute(Sample))" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": null, |
| 141 | + "id": "9", |
| 142 | + "metadata": {}, |
| 143 | + "outputs": [], |
| 144 | + "source": [ |
| 145 | + "wavelength_z_figure(results[3], wavelength_bins=400)" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": null, |
| 151 | + "id": "10", |
| 152 | + "metadata": {}, |
| 153 | + "outputs": [], |
| 154 | + "source": [ |
| 155 | + "wavelength_theta_figure(results, wavelength_bins=400, theta_bins=200, q_edges_to_display=[sc.scalar(0.016, unit='1/angstrom'), sc.scalar(0.19, unit='1/angstrom')])" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "code", |
| 160 | + "execution_count": null, |
| 161 | + "id": "11", |
| 162 | + "metadata": {}, |
| 163 | + "outputs": [], |
| 164 | + "source": [ |
| 165 | + "q_theta_figure(results, q_bins=300, theta_bins=200)" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "markdown", |
| 170 | + "id": "12", |
| 171 | + "metadata": {}, |
| 172 | + "source": [ |
| 173 | + "## Ni on Silicon" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "code", |
| 178 | + "execution_count": null, |
| 179 | + "id": "13", |
| 180 | + "metadata": {}, |
| 181 | + "outputs": [], |
| 182 | + "source": [ |
| 183 | + "results = {}\n", |
| 184 | + "for path in estia_mcstas_example('Ni-film on silicon'):\n", |
| 185 | + " w = wf.copy()\n", |
| 186 | + " w[Filename[SampleRun]] = path\n", |
| 187 | + " compute_reflectivity_curve_for_mcstas_data(w, results)\n", |
| 188 | + "\n", |
| 189 | + "ground_truth = estia_mcstas_groundtruth('Ni-film on silicon')\n", |
| 190 | + "sc.plot({'ground_truth': ground_truth} | results, norm='log', vmin=1e-9)" |
| 191 | + ] |
| 192 | + }, |
| 193 | + { |
| 194 | + "cell_type": "code", |
| 195 | + "execution_count": null, |
| 196 | + "id": "14", |
| 197 | + "metadata": {}, |
| 198 | + "outputs": [], |
| 199 | + "source": [ |
| 200 | + "results = []\n", |
| 201 | + "for path in estia_mcstas_example('Ni-film on silicon'):\n", |
| 202 | + " w = wf.copy()\n", |
| 203 | + " w[Filename[SampleRun]] = path\n", |
| 204 | + " results.append(w.compute(ReducibleData[SampleRun]))" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "code", |
| 209 | + "execution_count": null, |
| 210 | + "id": "15", |
| 211 | + "metadata": {}, |
| 212 | + "outputs": [], |
| 213 | + "source": [ |
| 214 | + "wavelength_z_figure(results[3], wavelength_bins=400)" |
| 215 | + ] |
| 216 | + }, |
| 217 | + { |
| 218 | + "cell_type": "code", |
| 219 | + "execution_count": null, |
| 220 | + "id": "16", |
| 221 | + "metadata": {}, |
| 222 | + "outputs": [], |
| 223 | + "source": [ |
| 224 | + "wavelength_theta_figure(results, wavelength_bins=400, theta_bins=200, q_edges_to_display=[sc.scalar(0.016, unit='1/angstrom'), sc.scalar(0.19, unit='1/angstrom')])" |
| 225 | + ] |
| 226 | + }, |
| 227 | + { |
| 228 | + "cell_type": "code", |
| 229 | + "execution_count": null, |
| 230 | + "id": "17", |
| 231 | + "metadata": {}, |
| 232 | + "outputs": [], |
| 233 | + "source": [ |
| 234 | + "q_theta_figure(results, q_bins=300, theta_bins=200)" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "cell_type": "markdown", |
| 239 | + "id": "18", |
| 240 | + "metadata": {}, |
| 241 | + "source": [ |
| 242 | + "## SiO2 on Silicon" |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "cell_type": "code", |
| 247 | + "execution_count": null, |
| 248 | + "id": "19", |
| 249 | + "metadata": {}, |
| 250 | + "outputs": [], |
| 251 | + "source": [ |
| 252 | + "results = {}\n", |
| 253 | + "for path in estia_mcstas_example('Natural SiO2 on silicon'):\n", |
| 254 | + " w = wf.copy()\n", |
| 255 | + " w[Filename[SampleRun]] = path\n", |
| 256 | + " compute_reflectivity_curve_for_mcstas_data(w, results)\n", |
| 257 | + "\n", |
| 258 | + "ground_truth = estia_mcstas_groundtruth('Natural SiO2 on silicon')\n", |
| 259 | + "sc.plot({'ground_truth': ground_truth} | results, norm='log', vmin=1e-9)" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "code", |
| 264 | + "execution_count": null, |
| 265 | + "id": "20", |
| 266 | + "metadata": {}, |
| 267 | + "outputs": [], |
| 268 | + "source": [ |
| 269 | + "results = []\n", |
| 270 | + "for path in estia_mcstas_example('Natural SiO2 on silicon'):\n", |
| 271 | + " w = wf.copy()\n", |
| 272 | + " w[Filename[SampleRun]] = path\n", |
| 273 | + " results.append(w.compute(ReducibleData[SampleRun]))" |
| 274 | + ] |
| 275 | + }, |
| 276 | + { |
| 277 | + "cell_type": "code", |
| 278 | + "execution_count": null, |
| 279 | + "id": "21", |
| 280 | + "metadata": {}, |
| 281 | + "outputs": [], |
| 282 | + "source": [ |
| 283 | + "wavelength_z_figure(results[3], wavelength_bins=400)" |
| 284 | + ] |
| 285 | + }, |
| 286 | + { |
| 287 | + "cell_type": "code", |
| 288 | + "execution_count": null, |
| 289 | + "id": "22", |
| 290 | + "metadata": {}, |
| 291 | + "outputs": [], |
| 292 | + "source": [ |
| 293 | + "wavelength_theta_figure(results, wavelength_bins=400, theta_bins=200, q_edges_to_display=[sc.scalar(0.016, unit='1/angstrom')])" |
| 294 | + ] |
| 295 | + }, |
| 296 | + { |
| 297 | + "cell_type": "code", |
| 298 | + "execution_count": null, |
| 299 | + "id": "23", |
| 300 | + "metadata": {}, |
| 301 | + "outputs": [], |
| 302 | + "source": [ |
| 303 | + "q_theta_figure(results, q_bins=300, theta_bins=200)" |
| 304 | + ] |
| 305 | + } |
| 306 | + ], |
| 307 | + "metadata": { |
| 308 | + "kernelspec": { |
| 309 | + "display_name": "Python 3 (ipykernel)", |
| 310 | + "language": "python", |
| 311 | + "name": "python3" |
| 312 | + }, |
| 313 | + "language_info": { |
| 314 | + "codemirror_mode": { |
| 315 | + "name": "ipython", |
| 316 | + "version": 3 |
| 317 | + }, |
| 318 | + "file_extension": ".py", |
| 319 | + "mimetype": "text/x-python", |
| 320 | + "name": "python", |
| 321 | + "nbconvert_exporter": "python", |
| 322 | + "pygments_lexer": "ipython3", |
| 323 | + "version": "3.10.14" |
| 324 | + } |
| 325 | + }, |
| 326 | + "nbformat": 4, |
| 327 | + "nbformat_minor": 5 |
| 328 | +} |
0 commit comments