|
1 | 1 | # SPDX-License-Identifier: BSD-3-Clause |
2 | 2 |
|
3 | 3 | import numpy as np |
| 4 | +import pytest |
4 | 5 |
|
5 | 6 | import matplotgl.pyplot as plt |
6 | 7 |
|
@@ -60,3 +61,90 @@ def test_imshow(): |
60 | 61 | im = ax.images[0] |
61 | 62 | assert np.allclose(im._array, data) |
62 | 63 | assert im.get_extent() == [0, 10, 0, 5] |
| 64 | + |
| 65 | + |
| 66 | +def test_set_xscale_log(): |
| 67 | + _, ax = plt.subplots() |
| 68 | + x = np.arange(50.0) |
| 69 | + y = np.sin(0.2 * x) |
| 70 | + |
| 71 | + ax.plot(x, y, lw=2) |
| 72 | + ax.set_xscale('log') |
| 73 | + |
| 74 | + assert ax.get_xscale() == 'log' |
| 75 | + |
| 76 | + |
| 77 | +def test_set_yscale_log(): |
| 78 | + _, ax = plt.subplots() |
| 79 | + x = np.arange(50.0) |
| 80 | + y = np.sin(0.2 * x) |
| 81 | + |
| 82 | + ax.plot(x, y, lw=2) |
| 83 | + ax.set_yscale('log') |
| 84 | + |
| 85 | + assert ax.get_yscale() == 'log' |
| 86 | + |
| 87 | + |
| 88 | +def test_set_xscale_invalid(): |
| 89 | + _, ax = plt.subplots() |
| 90 | + with pytest.raises(ValueError, match="Scale must be 'linear' or 'log'"): |
| 91 | + ax.set_xscale('invalid_scale') |
| 92 | + |
| 93 | + |
| 94 | +def test_set_yscale_invalid(): |
| 95 | + _, ax = plt.subplots() |
| 96 | + with pytest.raises(ValueError, match="Scale must be 'linear' or 'log'"): |
| 97 | + ax.set_yscale('invalid_scale') |
| 98 | + |
| 99 | + |
| 100 | +def test_set_xscale_log_before_plot(): |
| 101 | + _, ax = plt.subplots() |
| 102 | + x = np.arange(50.0) |
| 103 | + y = np.sin(0.2 * x) |
| 104 | + |
| 105 | + ax.set_xscale('log') |
| 106 | + ax.plot(x, y, lw=2) |
| 107 | + |
| 108 | + assert ax.get_xscale() == 'log' |
| 109 | + |
| 110 | + |
| 111 | +def test_set_yscale_log_before_plot(): |
| 112 | + _, ax = plt.subplots() |
| 113 | + x = np.arange(50.0) |
| 114 | + y = np.sin(0.2 * x) |
| 115 | + |
| 116 | + ax.set_yscale('log') |
| 117 | + ax.plot(x, y, lw=2) |
| 118 | + |
| 119 | + assert ax.get_yscale() == 'log' |
| 120 | + |
| 121 | + |
| 122 | +def test_semilogx(): |
| 123 | + _, ax = plt.subplots() |
| 124 | + x = np.arange(1.0, 50.0) |
| 125 | + y = np.sin(0.2 * x) |
| 126 | + |
| 127 | + ax.semilogx(x, y, lw=2) |
| 128 | + |
| 129 | + assert ax.get_xscale() == 'log' |
| 130 | + |
| 131 | + |
| 132 | +def test_semilogy(): |
| 133 | + _, ax = plt.subplots() |
| 134 | + x = np.arange(50.0) |
| 135 | + y = np.exp(0.1 * x) |
| 136 | + |
| 137 | + ax.semilogy(x, y, lw=2) |
| 138 | + |
| 139 | + assert ax.get_yscale() == 'log' |
| 140 | + |
| 141 | + |
| 142 | +def test_loglog(): |
| 143 | + _, ax = plt.subplots() |
| 144 | + x = np.arange(1.0, 50.0) |
| 145 | + y = np.exp(0.1 * x) |
| 146 | + |
| 147 | + ax.loglog(x, y, lw=2) |
| 148 | + |
| 149 | + assert ax.get_xscale() == 'log' |
| 150 | + assert ax.get_yscale() == 'log' |
0 commit comments