@@ -342,6 +342,33 @@ exactly through each point.
342342 :scale: 60
343343 :align: right
344344
345+ The ``derivative `` and ``antiderivative `` methods of the result object can be used
346+ for differentiation and integration. For the latter, the constant of integration is
347+ assumed to be zero, but we can "wrap" the antiderivative to include a nonzero
348+ constant of integration.
349+
350+ >>> d_interp_spline = interp_spline.derivative()
351+ >>> d_interp_results = d_interp_spline(interpolation_time)
352+ >>> i_interp_spline = lambda t : interp_spline.antiderivative()(t) - 1
353+ >>> i_interp_results = i_interp_spline(interpolation_time)
354+
355+ .. image :: auto_examples/images/sphx_glr_plot_interpolation_003.png
356+ :target: auto_examples/plot_interpolation.html
357+ :scale: 60
358+ :align: right
359+
360+ For functions that are monotonic on an interval (e.g. :math: `\sin ` from :math: `\pi /2 `
361+ to :math: `3 \pi /2 `), we can reverse the arguments of ``make_interp_spline `` to
362+ interpolate the inverse function. Because the first argument is expected to be
363+ monotonically *increasing *, we also reverse the order of elements in the arrays
364+ with :func: `numpy.flip `.
365+
366+ >>> i = (measured_time > np.pi/ 2 ) & (measured_time < 3 * np.pi/ 2 )
367+ >>> inverse_spline = sp.interpolate.make_interp_spline(np.flip(function[i]),
368+ ... np.flip(measured_time[i]))
369+ >>> inverse_spline(0 )
370+ array(3.14159265)
371+
345372See the summary exercise on :ref: `summary_exercise_stat_interp ` for a more
346373advanced spline interpolation example, and read the
347374`SciPy interpolation tutorial <https://scipy.github.io/devdocs/tutorial/interpolate.html >`__
0 commit comments