@@ -52,11 +52,11 @@ Image filtering
5252 >>> lena = misc.lena()
5353 >>> import numpy as np
5454 >>> noisy_lena = np.copy(lena).astype(np.float)
55- >>> noisy_lena += lena.std()* 0.5* np.random.standard_normal(lena.shape)
55+ >>> noisy_lena += lena.std() * 0.5 * np.random.standard_normal(lena.shape)
5656 >>> blurred_lena = ndimage.gaussian_filter(noisy_lena, sigma=3)
5757 >>> median_lena = ndimage.median_filter(blurred_lena, size=5)
5858 >>> from scipy import signal
59- >>> wiener_lena = signal.wiener(blurred_lena, (5,5))
59+ >>> wiener_lena = signal.wiener(blurred_lena, (5, 5))
6060
6161.. figure :: image_processing/filtered_lena.png
6262 :align: center
@@ -89,7 +89,7 @@ in order to modify other geometrical structures.
8989Let us first generate a structuring element ::
9090
9191 >>> el = ndimage.generate_binary_structure(2, 1)
92- >>> el# doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
92+ >>> el # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
9393 array([[False, True, False],
9494 [...True, True, True],
9595 [False, True, False]], dtype=bool)
@@ -100,7 +100,7 @@ Let us first generate a structuring element ::
100100
101101* **Erosion ** ::
102102
103- >>> a = np.zeros((7,7), dtype=np.int)
103+ >>> a = np.zeros((7, 7), dtype=np.int)
104104 >>> a[1:6, 2:5] = 1
105105 >>> a
106106 array([[0, 0, 0, 0, 0, 0, 0],
@@ -147,16 +147,17 @@ Let us first generate a structuring element ::
147147
148148* **Opening ** ::
149149
150- >>> a = np.zeros((5,5), dtype=np.int)
151- >>> a[1:4, 1:4] = 1; a[4, 4] = 1
150+ >>> a = np.zeros((5, 5), dtype=np.int)
151+ >>> a[1:4, 1:4] = 1
152+ >>> a[4, 4] = 1
152153 >>> a
153154 array([[0, 0, 0, 0, 0],
154155 [0, 1, 1, 1, 0],
155156 [0, 1, 1, 1, 0],
156157 [0, 1, 1, 1, 0],
157158 [0, 0, 0, 0, 1]])
158159 >>> # Opening removes small objects
159- >>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(np.int)
160+ >>> ndimage.binary_opening(a, structure=np.ones((3, 3))).astype(np.int)
160161 array([[0, 0, 0, 0, 0],
161162 [0, 1, 1, 1, 0],
162163 [0, 1, 1, 1, 0],
@@ -183,7 +184,7 @@ image. ::
183184
184185 >>> a = np.zeros((50, 50))
185186 >>> a[10:-10, 10:-10] = 1
186- >>> a += 0.25* np.random.standard_normal(a.shape)
187+ >>> a += 0.25 * np.random.standard_normal(a.shape)
187188 >>> mask = a>=0.5
188189 >>> opened_mask = ndimage.binary_opening(mask)
189190 >>> closed_mask = ndimage.binary_closing(opened_mask)
@@ -203,9 +204,9 @@ For *gray-valued* images, eroding (resp. dilating) amounts to replacing
203204a pixel by the minimal (resp. maximal) value among pixels covered by the
204205structuring element centered on the pixel of interest. ::
205206
206- >>> a = np.zeros((7,7), dtype=np.int)
207+ >>> a = np.zeros((7, 7), dtype=np.int)
207208 >>> a[1:6, 1:6] = 3
208- >>> a[4,4] = 2; a[2,3] = 1
209+ >>> a[4, 4] = 2; a[2, 3] = 1
209210 >>> a
210211 array([[0, 0, 0, 0, 0, 0, 0],
211212 [0, 3, 3, 3, 3, 3, 0],
@@ -214,7 +215,7 @@ structuring element centered on the pixel of interest. ::
214215 [0, 3, 3, 3, 2, 3, 0],
215216 [0, 3, 3, 3, 3, 3, 0],
216217 [0, 0, 0, 0, 0, 0, 0]])
217- >>> ndimage.grey_erosion(a, size=(3,3))
218+ >>> ndimage.grey_erosion(a, size=(3, 3))
218219 array([[0, 0, 0, 0, 0, 0, 0],
219220 [0, 0, 0, 0, 0, 0, 0],
220221 [0, 0, 1, 1, 1, 0, 0],
@@ -230,7 +231,7 @@ Measurements on images
230231Let us first generate a nice synthetic binary image. ::
231232
232233 >>> x, y = np.indices((100, 100))
233- >>> sig = np.sin(2*np.pi*x/50.)* np.sin(2*np.pi*y/50.)* (1+x*y/50.**2)**2
234+ >>> sig = np.sin(2*np.pi*x/50.) * np.sin(2*np.pi*y/50.) * (1+x*y/50.**2)**2
234235 >>> mask = sig > 1
235236
236237Now we look for various information about the objects in the image::
0 commit comments