11from typing import NamedTuple
22
3- from scipy ._typing import Untyped
3+ from scipy ._typing import Alternative , NanPolicy , Untyped
44
55__all__ = [
66 "anderson" ,
@@ -35,6 +35,31 @@ __all__ = [
3535 "yeojohnson_normplot" ,
3636]
3737
38+ class DirectionalStats :
39+ mean_direction : Untyped
40+ mean_resultant_length : Untyped
41+ def __init__ (self , mean_direction , mean_resultant_length ) -> None : ...
42+
43+ class ShapiroResult (NamedTuple ):
44+ statistic : Untyped
45+ pvalue : Untyped
46+
47+ class AnsariResult (NamedTuple ):
48+ statistic : Untyped
49+ pvalue : Untyped
50+
51+ class BartlettResult (NamedTuple ):
52+ statistic : Untyped
53+ pvalue : Untyped
54+
55+ class LeveneResult (NamedTuple ):
56+ statistic : Untyped
57+ pvalue : Untyped
58+
59+ class FlignerResult (NamedTuple ):
60+ statistic : Untyped
61+ pvalue : Untyped
62+
3863class Mean (NamedTuple ):
3964 statistic : Untyped
4065 minmax : Untyped
@@ -47,10 +72,30 @@ class Std_dev(NamedTuple):
4772 statistic : Untyped
4873 minmax : Untyped
4974
75+ # TODO: bunches
76+ AndersonResult : Untyped
77+ Anderson_ksampResult : Untyped
78+ WilcoxonResult : Untyped
79+ MedianTestResult : Untyped
80+
5081def bayes_mvs (data , alpha : float = 0.9 ) -> Untyped : ...
5182def mvsdist (data ) -> Untyped : ...
52- def kstat (data , n : int = 2 , * , axis : Untyped | None = None ) -> Untyped : ...
53- def kstatvar (data , n : int = 2 , * , axis : Untyped | None = None ) -> Untyped : ...
83+ def kstat (
84+ data ,
85+ n : int = 2 ,
86+ * ,
87+ axis : int | None = None ,
88+ nan_policy : NanPolicy = "propagate" ,
89+ keepdims : bool = False ,
90+ ) -> Untyped : ...
91+ def kstatvar (
92+ data ,
93+ n : int = 2 ,
94+ * ,
95+ axis : int | None = None ,
96+ nan_policy : NanPolicy = "propagate" ,
97+ keepdims : bool = False ,
98+ ) -> Untyped : ...
5499def probplot (
55100 x ,
56101 sparams = (),
@@ -63,9 +108,6 @@ def ppcc_max(x, brack=(0.0, 1.0), dist: str = "tukeylambda") -> Untyped: ...
63108def ppcc_plot (x , a , b , dist : str = "tukeylambda" , plot : Untyped | None = None , N : int = 80 ) -> Untyped : ...
64109def boxcox_llf (lmb , data ) -> Untyped : ...
65110def boxcox (x , lmbda : Untyped | None = None , alpha : Untyped | None = None , optimizer : Untyped | None = None ) -> Untyped : ...
66-
67- class _BigFloat : ...
68-
69111def boxcox_normmax (
70112 x ,
71113 brack : Untyped | None = None ,
@@ -79,59 +121,44 @@ def yeojohnson(x, lmbda: Untyped | None = None) -> Untyped: ...
79121def yeojohnson_llf (lmb , data ) -> Untyped : ...
80122def yeojohnson_normmax (x , brack : Untyped | None = None ) -> Untyped : ...
81123def yeojohnson_normplot (x , la , lb , plot : Untyped | None = None , N : int = 80 ) -> Untyped : ...
82-
83- class ShapiroResult (NamedTuple ):
84- statistic : Untyped
85- pvalue : Untyped
86-
87- def shapiro (x ) -> Untyped : ...
88-
89- AndersonResult : Untyped
90-
124+ def shapiro (x , * , axis : int | None = None , nan_policy : NanPolicy = "propagate" , keepdims : bool = False ) -> Untyped : ...
91125def anderson (x , dist : str = "norm" ) -> Untyped : ...
92-
93- Anderson_ksampResult : Untyped
94-
95126def anderson_ksamp (samples , midrank : bool = True , * , method : Untyped | None = None ) -> Untyped : ...
96-
97- class AnsariResult (NamedTuple ):
98- statistic : Untyped
99- pvalue : Untyped
100-
101- class _ABW :
102- m : Untyped
103- n : Untyped
104- astart : Untyped
105- total : Untyped
106- freqs : Untyped
107- def __init__ (self ) -> None : ...
108- def pmf (self , k , n , m ) -> Untyped : ...
109- def cdf (self , k , n , m ) -> Untyped : ...
110- def sf (self , k , n , m ) -> Untyped : ...
111-
112- def ansari (x , y , alternative : str = "two-sided" ) -> Untyped : ...
113-
114- class BartlettResult (NamedTuple ):
115- statistic : Untyped
116- pvalue : Untyped
117-
118- def bartlett (* samples , axis : int = 0 ) -> Untyped : ...
119-
120- class LeveneResult (NamedTuple ):
121- statistic : Untyped
122- pvalue : Untyped
123-
124- def levene (* samples , center : str = "median" , proportiontocut : float = 0.05 ) -> Untyped : ...
125-
126- class FlignerResult (NamedTuple ):
127- statistic : Untyped
128- pvalue : Untyped
129-
130- def fligner (* samples , center : str = "median" , proportiontocut : float = 0.05 ) -> Untyped : ...
131- def mood (x , y , axis : int = 0 , alternative : str = "two-sided" ) -> Untyped : ...
132-
133- WilcoxonResult : Untyped
134-
127+ def ansari (
128+ x ,
129+ y ,
130+ alternative : Alternative = "two-sided" ,
131+ * ,
132+ axis : int | None = 0 ,
133+ nan_policy : NanPolicy = "propagate" ,
134+ keepdims : bool = False ,
135+ ) -> Untyped : ...
136+ def bartlett (* samples , axis : int = 0 , nan_policy : NanPolicy = "propagate" , keepdims : bool = False ) -> Untyped : ...
137+ def levene (
138+ * samples ,
139+ center : str = "median" ,
140+ proportiontocut : float = 0.05 ,
141+ axis : int | None = 0 ,
142+ nan_policy : NanPolicy = "propagate" ,
143+ keepdims : bool = False ,
144+ ) -> Untyped : ...
145+ def fligner (
146+ * samples ,
147+ center : str = "median" ,
148+ proportiontocut : float = 0.05 ,
149+ axis : int | None = 0 ,
150+ nan_policy : NanPolicy = "propagate" ,
151+ keepdims : bool = False ,
152+ ) -> Untyped : ...
153+ def mood (
154+ x ,
155+ y ,
156+ axis : int = 0 ,
157+ alternative : Alternative = "two-sided" ,
158+ * ,
159+ nan_policy : NanPolicy = "propagate" ,
160+ keepdims : bool = False ,
161+ ) -> Untyped : ...
135162def wilcoxon_result_unpacker (res ) -> Untyped : ...
136163def wilcoxon_result_object (statistic , pvalue , zstatistic : Untyped | None = None ) -> Untyped : ...
137164def wilcoxon_outputs (kwds ) -> Untyped : ...
@@ -140,37 +167,47 @@ def wilcoxon(
140167 y : Untyped | None = None ,
141168 zero_method : str = "wilcox" ,
142169 correction : bool = False ,
143- alternative : str = "two-sided" ,
170+ alternative : Alternative = "two-sided" ,
144171 method : str = "auto" ,
145172 * ,
146173 axis : int = 0 ,
174+ nan_policy : NanPolicy = "propagate" ,
175+ keepdims : bool = False ,
147176) -> Untyped : ...
148-
149- MedianTestResult : Untyped
150-
151177def median_test (
152178 * samples ,
153179 ties : str = "below" ,
154180 correction : bool = True ,
155181 lambda_ : int = 1 ,
156- nan_policy : str = "propagate" ,
182+ nan_policy : NanPolicy = "propagate" ,
183+ ) -> Untyped : ...
184+ def circmean (
185+ samples ,
186+ high = ...,
187+ low : int = 0 ,
188+ axis : int | None = None ,
189+ nan_policy : NanPolicy = "propagate" ,
190+ * ,
191+ keepdims : bool = False ,
192+ ) -> Untyped : ...
193+ def circvar (
194+ samples ,
195+ high = ...,
196+ low : int = 0 ,
197+ axis : int | None = None ,
198+ nan_policy : NanPolicy = "propagate" ,
199+ * ,
200+ keepdims : bool = False ,
157201) -> Untyped : ...
158- def circmean (samples , high = ..., low : int = 0 , axis : Untyped | None = None , nan_policy : str = "propagate" ) -> Untyped : ...
159- def circvar (samples , high = ..., low : int = 0 , axis : Untyped | None = None , nan_policy : str = "propagate" ) -> Untyped : ...
160202def circstd (
161203 samples ,
162204 high = ...,
163205 low : int = 0 ,
164- axis : Untyped | None = None ,
165- nan_policy : str = "propagate" ,
206+ axis : int | None = None ,
207+ nan_policy : NanPolicy = "propagate" ,
166208 * ,
167209 normalize : bool = False ,
210+ keepdims : bool = False ,
168211) -> Untyped : ...
169-
170- class DirectionalStats :
171- mean_direction : Untyped
172- mean_resultant_length : Untyped
173- def __init__ (self , mean_direction , mean_resultant_length ) -> None : ...
174-
175212def directional_stats (samples , * , axis : int = 0 , normalize : bool = True ) -> Untyped : ...
176213def false_discovery_control (ps , * , axis : int = 0 , method : str = "bh" ) -> Untyped : ...
0 commit comments