|
1 |
| -from typing import overload |
| 1 | +from typing import Any, Never, TypeAlias, TypeVar, overload |
2 | 2 |
|
3 | 3 | import numpy as np
|
| 4 | +import optype as op |
4 | 5 | import optype.numpy as onp
|
| 6 | +import optype.numpy.compat as npc |
5 | 7 |
|
6 |
| -from scipy.sparse import csc_matrix |
| 8 | +from scipy.sparse import csc_matrix, sparray, spmatrix |
| 9 | +from scipy.sparse._base import _spbase |
7 | 10 |
|
8 | 11 | __all__ = ["clarkson_woodruff_transform"]
|
9 | 12 |
|
| 13 | +_ScalarT = TypeVar("_ScalarT", bound=npc.number | np.bool_) |
| 14 | + |
| 15 | +_ToInt: TypeAlias = int | npc.integer |
| 16 | +_ToSparse: TypeAlias = _spbase[_ScalarT] | sparray[_ScalarT] | spmatrix[_ScalarT] |
| 17 | + |
10 | 18 | ###
|
11 | 19 |
|
12 |
| -def cwt_matrix(n_rows: onp.ToInt, n_columns: onp.ToInt, rng: onp.random.ToRNG | None = None) -> csc_matrix[np.int_]: ... |
| 20 | +def cwt_matrix(n_rows: _ToInt, n_columns: _ToInt, rng: onp.random.ToRNG | None = None) -> csc_matrix[np.int_]: ... |
13 | 21 |
|
14 | 22 | #
|
15 | 23 | @overload
|
16 | 24 | def clarkson_woodruff_transform(
|
17 |
| - input_matrix: onp.ToIntND, |
18 |
| - sketch_size: onp.ToInt, |
| 25 | + input_matrix: _ToSparse[Never], |
| 26 | + sketch_size: _ToInt, |
| 27 | + rng: onp.random.ToRNG | None = None, |
| 28 | + *, |
| 29 | + seed: onp.random.ToRNG | None = None, |
| 30 | +) -> csc_matrix[Any]: ... |
| 31 | +@overload |
| 32 | +def clarkson_woodruff_transform( |
| 33 | + input_matrix: _ToSparse[npc.integer | np.bool_], |
| 34 | + sketch_size: _ToInt, |
| 35 | + rng: onp.random.ToRNG | None = None, |
| 36 | + *, |
| 37 | + seed: onp.random.ToRNG | None = None, |
| 38 | +) -> csc_matrix[np.int_]: ... |
| 39 | +@overload |
| 40 | +def clarkson_woodruff_transform( |
| 41 | + input_matrix: _ToSparse[np.float32 | np.float64], |
| 42 | + sketch_size: _ToInt, |
| 43 | + rng: onp.random.ToRNG | None = None, |
| 44 | + *, |
| 45 | + seed: onp.random.ToRNG | None = None, |
| 46 | +) -> csc_matrix[np.float64]: ... |
| 47 | +@overload |
| 48 | +def clarkson_woodruff_transform( |
| 49 | + input_matrix: _ToSparse[np.longdouble], |
| 50 | + sketch_size: _ToInt, |
19 | 51 | rng: onp.random.ToRNG | None = None,
|
20 | 52 | *,
|
21 | 53 | seed: onp.random.ToRNG | None = None,
|
| 54 | +) -> csc_matrix[np.longdouble]: ... |
| 55 | +@overload |
| 56 | +def clarkson_woodruff_transform( |
| 57 | + input_matrix: _ToSparse[np.complex64 | np.complex128], |
| 58 | + sketch_size: _ToInt, |
| 59 | + rng: onp.random.ToRNG | None = None, |
| 60 | + *, |
| 61 | + seed: onp.random.ToRNG | None = None, |
| 62 | +) -> csc_matrix[np.complex128]: ... |
| 63 | +@overload |
| 64 | +def clarkson_woodruff_transform( |
| 65 | + input_matrix: _ToSparse[np.clongdouble], |
| 66 | + sketch_size: _ToInt, |
| 67 | + rng: onp.random.ToRNG | None = None, |
| 68 | + *, |
| 69 | + seed: onp.random.ToRNG | None = None, |
| 70 | +) -> csc_matrix[np.clongdouble]: ... |
| 71 | +@overload |
| 72 | +def clarkson_woodruff_transform( |
| 73 | + input_matrix: onp.CanArrayND[Never], |
| 74 | + sketch_size: _ToInt, |
| 75 | + rng: onp.random.ToRNG | None = None, |
| 76 | + *, |
| 77 | + seed: onp.random.ToRNG | None = None, |
| 78 | +) -> onp.ArrayND[Any]: ... |
| 79 | +@overload |
| 80 | +def clarkson_woodruff_transform( |
| 81 | + input_matrix: onp.ToIntND, sketch_size: _ToInt, rng: onp.random.ToRNG | None = None, *, seed: onp.random.ToRNG | None = None |
22 | 82 | ) -> onp.ArrayND[np.int_]: ...
|
23 | 83 | @overload
|
24 | 84 | def clarkson_woodruff_transform(
|
25 |
| - input_matrix: onp.ToJustFloat64_ND, |
26 |
| - sketch_size: onp.ToInt, |
| 85 | + input_matrix: onp.ToArrayND[op.JustFloat, np.float16 | np.float32 | np.float64], |
| 86 | + sketch_size: _ToInt, |
27 | 87 | rng: onp.random.ToRNG | None = None,
|
28 | 88 | *,
|
29 | 89 | seed: onp.random.ToRNG | None = None,
|
30 | 90 | ) -> onp.ArrayND[np.float64]: ...
|
31 | 91 | @overload
|
32 | 92 | def clarkson_woodruff_transform(
|
33 |
| - input_matrix: onp.ToJustFloatND, |
34 |
| - sketch_size: onp.ToInt, |
| 93 | + input_matrix: onp.ToArrayND[np.longdouble, np.longdouble], |
| 94 | + sketch_size: _ToInt, |
35 | 95 | rng: onp.random.ToRNG | None = None,
|
36 | 96 | *,
|
37 | 97 | seed: onp.random.ToRNG | None = None,
|
38 |
| -) -> onp.ArrayND[np.float64 | np.longdouble]: ... |
| 98 | +) -> onp.ArrayND[np.longdouble]: ... |
39 | 99 | @overload
|
40 | 100 | def clarkson_woodruff_transform(
|
41 |
| - input_matrix: onp.ToJustComplex128_ND, |
42 |
| - sketch_size: onp.ToInt, |
| 101 | + input_matrix: onp.ToArrayND[op.JustComplex, np.complex64 | np.complex128], |
| 102 | + sketch_size: _ToInt, |
43 | 103 | rng: onp.random.ToRNG | None = None,
|
44 | 104 | *,
|
45 | 105 | seed: onp.random.ToRNG | None = None,
|
46 | 106 | ) -> onp.ArrayND[np.complex128]: ...
|
47 | 107 | @overload
|
48 | 108 | def clarkson_woodruff_transform(
|
49 |
| - input_matrix: onp.ToJustComplexND, |
50 |
| - sketch_size: onp.ToInt, |
| 109 | + input_matrix: onp.ToArrayND[np.clongdouble, np.clongdouble], |
| 110 | + sketch_size: _ToInt, |
51 | 111 | rng: onp.random.ToRNG | None = None,
|
52 | 112 | *,
|
53 | 113 | seed: onp.random.ToRNG | None = None,
|
54 |
| -) -> onp.ArrayND[np.complex128 | np.clongdouble]: ... |
| 114 | +) -> onp.ArrayND[np.clongdouble]: ... |
0 commit comments