|
| 1 | +# defined in scipy/ndimage/src/nd_image.c |
| 2 | + |
| 3 | +from _typeshed import Incomplete |
| 4 | +from collections.abc import Callable, Mapping |
| 5 | +from types import CapsuleType |
| 6 | +from typing import overload |
| 7 | + |
| 8 | +import numpy as np |
| 9 | +import optype.numpy as onp |
| 10 | +import optype.numpy.compat as npc |
| 11 | + |
| 12 | +from scipy._lib._ccallback import LowLevelCallable |
| 13 | + |
| 14 | +def correlate1d( |
| 15 | + input: onp.ArrayND[npc.number], |
| 16 | + weights: onp.ArrayND[np.float64], |
| 17 | + axis: int, |
| 18 | + output: onp.ArrayND[npc.number], |
| 19 | + mode: int, |
| 20 | + cval: float, |
| 21 | + origin: int, |
| 22 | + /, |
| 23 | +) -> None: ... |
| 24 | +def correlate( |
| 25 | + input: onp.ArrayND[npc.number], |
| 26 | + weights: onp.ArrayND[np.float64], |
| 27 | + output: onp.ArrayND[npc.number], |
| 28 | + mode: int, |
| 29 | + cval: float, |
| 30 | + origin: int | onp.ArrayND[np.intp], |
| 31 | + /, |
| 32 | +) -> None: ... |
| 33 | +def uniform_filter1d( |
| 34 | + input: onp.ArrayND[npc.number], |
| 35 | + filter_size: int, |
| 36 | + axis: int, |
| 37 | + output: onp.ArrayND[npc.number], |
| 38 | + mode: int, |
| 39 | + cval: float, |
| 40 | + origin: int, |
| 41 | + /, |
| 42 | +) -> None: ... |
| 43 | +def min_or_max_filter1d( |
| 44 | + input: onp.ArrayND[npc.number], |
| 45 | + filter_size: int, |
| 46 | + axis: int, |
| 47 | + output: onp.ArrayND[npc.number], |
| 48 | + mode: int, |
| 49 | + cval: float, |
| 50 | + origin: int, |
| 51 | + minimum: int, |
| 52 | + /, |
| 53 | +) -> None: ... |
| 54 | +def min_or_max_filter( |
| 55 | + input: onp.ArrayND[npc.number], |
| 56 | + footprint: onp.ArrayND[npc.number], |
| 57 | + structure: onp.ArrayND[npc.number] | None, |
| 58 | + output: onp.ArrayND[npc.number], |
| 59 | + mode: int, |
| 60 | + cval: float, |
| 61 | + origin: int | onp.ArrayND[np.intp], |
| 62 | + minimum: int, |
| 63 | + /, |
| 64 | +) -> None: ... |
| 65 | +def rank_filter( |
| 66 | + input: onp.ArrayND[npc.number], |
| 67 | + rank: int, |
| 68 | + footprint: onp.ArrayND[npc.number], |
| 69 | + output: onp.ArrayND[npc.number], |
| 70 | + mode: int, |
| 71 | + cval: float, |
| 72 | + origin: onp.ArrayND[np.intp], |
| 73 | + /, |
| 74 | +) -> None: ... |
| 75 | +def generic_filter1d( |
| 76 | + input: onp.ArrayND[npc.number], |
| 77 | + fnc: Callable[..., Incomplete] | LowLevelCallable, |
| 78 | + filter_size: int, |
| 79 | + axis: int, |
| 80 | + output: onp.ArrayND[npc.number], |
| 81 | + mode: int, |
| 82 | + cval: float, |
| 83 | + origin: int, |
| 84 | + extra_arguments: tuple[object, ...], |
| 85 | + extra_keywords: Mapping[str, object], |
| 86 | + /, |
| 87 | +) -> None: ... |
| 88 | +def generic_filter( |
| 89 | + input: onp.ArrayND[npc.number], |
| 90 | + fnc: Callable[..., Incomplete] | LowLevelCallable, |
| 91 | + footprint: onp.ArrayND[npc.number], |
| 92 | + output: onp.ArrayND[npc.number], |
| 93 | + mode: int, |
| 94 | + cval: float, |
| 95 | + origin: int | onp.ArrayND[np.intp], |
| 96 | + extra_arguments: tuple[object, ...], |
| 97 | + extra_keywords: Mapping[str, object], |
| 98 | + /, |
| 99 | +) -> None: ... |
| 100 | +def fourier_filter( |
| 101 | + input: onp.ArrayND[npc.number], |
| 102 | + parameters: onp.ArrayND[npc.number], |
| 103 | + n: int, |
| 104 | + axis: int, |
| 105 | + output: onp.ArrayND[npc.number], |
| 106 | + filter_type: int, |
| 107 | + /, |
| 108 | +) -> None: ... |
| 109 | +def fourier_shift( |
| 110 | + input: onp.ArrayND[npc.number], order: int, axis: int, output: onp.ArrayND[npc.number], mode: int, / |
| 111 | +) -> None: ... |
| 112 | +def spline_filter1d( |
| 113 | + input: onp.ArrayND[npc.number], order: int, axis: int, output: onp.ArrayND[npc.number], mode: int, / |
| 114 | +) -> None: ... |
| 115 | +def geometric_transform( |
| 116 | + input: onp.ArrayND[npc.number], |
| 117 | + fnc: Callable[..., Incomplete] | LowLevelCallable, |
| 118 | + coordinates: onp.ArrayND[npc.number] | None, |
| 119 | + matrix: onp.ArrayND[npc.number] | None, |
| 120 | + shift: onp.ArrayND[npc.number] | None, |
| 121 | + output: onp.ArrayND[npc.number], |
| 122 | + order: int, |
| 123 | + mode: int, |
| 124 | + cval: float, |
| 125 | + nprepad: int, |
| 126 | + extra_arguments: tuple[object, ...], |
| 127 | + extra_keywords: Mapping[str, object], |
| 128 | + /, |
| 129 | +) -> None: ... |
| 130 | +def zoom_shift( |
| 131 | + input: onp.ArrayND[npc.number], |
| 132 | + zoom: onp.ArrayND[npc.number] | None, |
| 133 | + shift: onp.ArrayND[npc.number] | None, |
| 134 | + output: onp.ArrayND[npc.number], |
| 135 | + order: int, |
| 136 | + mode: int, |
| 137 | + cval: float, |
| 138 | + nprepad: int, |
| 139 | + grid_mode: int, |
| 140 | + /, |
| 141 | +) -> None: ... |
| 142 | + |
| 143 | +# |
| 144 | +def find_objects(input: onp.ArrayND[npc.number], max_label: int) -> None: ... |
| 145 | +def value_indices(arr: onp.ArrayND[npc.integer], ignoreValIsNone: bool, ignorevalArr: onp.ArrayND, /) -> None: ... |
| 146 | + |
| 147 | +# |
| 148 | +def watershed_ift( |
| 149 | + input: onp.ArrayND[npc.number], |
| 150 | + markers: onp.ArrayND[npc.number], |
| 151 | + strct: onp.ArrayND[npc.number], |
| 152 | + output: onp.ArrayND[npc.number], |
| 153 | +) -> None: ... |
| 154 | +def distance_transform_bf( |
| 155 | + input: onp.ArrayND[npc.number], |
| 156 | + metric: int, |
| 157 | + sampling: onp.ArrayND[npc.number] | None, |
| 158 | + output: onp.ArrayND[npc.number] | None, |
| 159 | + features: onp.ArrayND[npc.number] | None, |
| 160 | +) -> None: ... |
| 161 | +def distance_transform_op( |
| 162 | + input: onp.ArrayND[npc.number], |
| 163 | + strct: onp.ArrayND[npc.number], |
| 164 | + distances: onp.ArrayND[npc.number], |
| 165 | + features: onp.ArrayND[npc.number] | None, |
| 166 | +) -> None: ... |
| 167 | +def euclidean_feature_transform( |
| 168 | + input: onp.ArrayND[npc.number], sampling: onp.ArrayND[npc.number] | None, features: onp.ArrayND[npc.number] |
| 169 | +) -> None: ... |
| 170 | + |
| 171 | +# |
| 172 | +@overload |
| 173 | +def binary_erosion( |
| 174 | + input: onp.ArrayND[npc.number], |
| 175 | + strct: onp.ArrayND[npc.number], |
| 176 | + mask: onp.ArrayND[npc.number] | None, |
| 177 | + output: onp.ArrayND[npc.number], |
| 178 | + border_value: int, |
| 179 | + origin: onp.ArrayND[np.intp], |
| 180 | + invert: int, |
| 181 | + center_is_true: int, |
| 182 | + return_coordinates: onp.ToFalse, |
| 183 | +) -> int: ... |
| 184 | +@overload |
| 185 | +def binary_erosion( |
| 186 | + input: onp.ArrayND[npc.number], |
| 187 | + strct: onp.ArrayND[npc.number], |
| 188 | + mask: onp.ArrayND[npc.number] | None, |
| 189 | + output: onp.ArrayND[npc.number], |
| 190 | + border_value: int, |
| 191 | + origin: int | onp.ArrayND[np.intp], |
| 192 | + invert: int, |
| 193 | + center_is_true: int, |
| 194 | + return_coordinates: onp.ToTrue, |
| 195 | +) -> tuple[int, CapsuleType]: ... |
| 196 | + |
| 197 | +# |
| 198 | +def binary_erosion2( |
| 199 | + array: onp.ArrayND[npc.number], |
| 200 | + strct: onp.ArrayND[npc.number], |
| 201 | + mask: onp.ArrayND[npc.number] | None, |
| 202 | + niter: int, |
| 203 | + origin: int | onp.ArrayND[np.intp], |
| 204 | + invert: int, |
| 205 | + cobj: CapsuleType | None, |
| 206 | +) -> None: ... |
0 commit comments