|
| 1 | +--- |
| 2 | +jupyter: |
| 3 | + jupytext: |
| 4 | + text_representation: |
| 5 | + extension: .md |
| 6 | + format_name: markdown |
| 7 | + format_version: '1.3' |
| 8 | + jupytext_version: 1.14.4 |
| 9 | + kernelspec: |
| 10 | + display_name: Python 3 (ipykernel) |
| 11 | + language: python |
| 12 | + name: python3 |
| 13 | +--- |
| 14 | + |
| 15 | +<!-- #region tags=[] --> |
| 16 | +# LFRic Iris data manipulation and visualisation practical |
| 17 | + |
| 18 | +Let's apply what we've learned about data processing and visualisation of LFRic data in Iris and PyVista with the two exercises. \ |
| 19 | + |
| 20 | +The aim is to use the prompts to write the code yourself, but we have also provided a separate notebook containing the answers if you are stuck \ |
| 21 | + |
| 22 | +All the information needed to write the code for this practical can be found in the notebooks in the first part of this practical \ |
| 23 | + |
| 24 | +Note: this is delivered in Jupyter labs, but sometime the PyVista and GeoVista plotting is laggy in labs. If you prefer you can run in ipython. |
| 25 | + |
| 26 | + |
| 27 | +<!-- #endregion --> |
| 28 | + |
| 29 | +<!-- #region tags=[] --> |
| 30 | +## Exercise 1 - Regrid LFRic to UM and plot data |
| 31 | + |
| 32 | +In this exercise you will take LFRic data, regrid it to UM data and then plot the differences |
| 33 | +<!-- #endregion --> |
| 34 | + |
| 35 | +**Step 1** To begin, we need to import the neccesary packages that we will need for this exercise. |
| 36 | + |
| 37 | +```python tags=[] |
| 38 | +%matplotlib inline |
| 39 | +import pyvista as pv |
| 40 | +import geovista as gv |
| 41 | +import geovista.theme |
| 42 | +import iris.quickplot as qplt |
| 43 | +import iris |
| 44 | +from geovista import GeoPlotter |
| 45 | +from esmf_regrid.experimental.unstructured_scheme import MeshToGridESMFRegridder, GridToMeshESMFRegridder |
| 46 | +from iris.experimental.ugrid.load import PARSE_UGRID_ON_LOAD |
| 47 | +pv.rcParams["use_ipyvtk"] = True |
| 48 | +iris.FUTURE.datum_support = True # avoids some warnings |
| 49 | + |
| 50 | +``` |
| 51 | + |
| 52 | +The pv_conversions script contains two functions which convert LFRic cubes to pyvista objects. Load these two functions: |
| 53 | + |
| 54 | +```python tags=[] |
| 55 | +from pv_conversions import pv_from_lfric_cube |
| 56 | +``` |
| 57 | + |
| 58 | +**Step 2** Use iris.load_cube to load in the lfric data above, and select the diagnostic 'surface_air_pressure'. Print the cube - is it a mesh or grid? \ |
| 59 | + (hint: you will need to use PARSE_UGRID_ON_LOAD.context() ) |
| 60 | + |
| 61 | +```python tags=[] |
| 62 | +# Define the location of the data and file names |
| 63 | +data_path = '/scratch/bfock/example_data_iris-mesh-tutorial' |
| 64 | +data_path = '/scratch/bfock/example_data_u-ct674/' |
| 65 | + |
| 66 | +lfric_path = data_path + '20210324T0000Z_lf_ugrid.nc' |
| 67 | +um_path = data_path + '20210324T0000Z_um_latlon.nc' |
| 68 | + |
| 69 | +with PARSE_UGRID_ON_LOAD.context(): |
| 70 | + lfric_rho = iris.load_cube(lfric_path, 'surface_air_pressure') |
| 71 | +print(lfric_rho) |
| 72 | +``` |
| 73 | + |
| 74 | +<!-- #region tags=[] --> |
| 75 | +**Step 4** Select the first timestep from the data so we have a 2D cube |
| 76 | +<!-- #endregion --> |
| 77 | + |
| 78 | +```python tags=[] |
| 79 | +lfric_rho_t0 = lfric_rho[0] |
| 80 | +``` |
| 81 | + |
| 82 | +**Step 3** Transform the LFRic cube into a pyvista object using one of the functions from pv_conversions |
| 83 | + |
| 84 | +```python tags=[] |
| 85 | +lfric_pv = pv_from_lfric_cube(lfric_rho_t0) |
| 86 | +``` |
| 87 | + |
| 88 | +**Step 5** Use GeoPlotter to plot the data using PyVista. You will need to use plotter.show() to display the plot. \ |
| 89 | + |
| 90 | +You can now observe Surface Air Pressue on a 3D globe. |
| 91 | + |
| 92 | +```python tags=[] |
| 93 | +# Plot the data using pyvista |
| 94 | +plotter = GeoPlotter() |
| 95 | +_ = plotter.add_mesh(lfric_pv) |
| 96 | +plotter.show() |
| 97 | +``` |
| 98 | + |
| 99 | +**Step 6** Now, lets regrid some LFRic data onto a lat/lon grid \ |
| 100 | + |
| 101 | +Use iris.load_cube to load the reference grid and print the cube. You can use the equivelent UM data loaded above for this. |
| 102 | + |
| 103 | +```python tags=[] |
| 104 | +um_rho = iris.load_cube(um_path, 'surface_air_pressure') |
| 105 | +print(um_rho) |
| 106 | +``` |
| 107 | + |
| 108 | +**Step 7** Create a regridder by using MeshToGridESMRegridder. Make sure the mesh and grid are the correct way round, consult the regridding section of the notebooks for help. |
| 109 | + |
| 110 | +```python tags=[] |
| 111 | +# Create the regrider |
| 112 | +regridder = MeshToGridESMFRegridder(lfric_rho_t0, um_rho) |
| 113 | +``` |
| 114 | + |
| 115 | +**Step 8** Now, regrid the LFRic data using the regridder you created. Print the result - is your LFRic data regridded? |
| 116 | + |
| 117 | +```python tags=[] |
| 118 | +result = regridder(lfric_rho_t0) |
| 119 | +print(result) |
| 120 | +``` |
| 121 | + |
| 122 | +**Step 9** Using qplt.pcolormesh plot the regridded LFRic data |
| 123 | + |
| 124 | +```python tags=[] |
| 125 | +qplt.pcolormesh(result) |
| 126 | +``` |
| 127 | + |
| 128 | +**Step 10** We can use the UM data loaded as reference for the regridding to compare to the reggrided LFRic data.\ |
| 129 | +Now select the first timestep of the UM data loaded in step 6 |
| 130 | + |
| 131 | +```python tags=[] |
| 132 | +um_rho_t0 = um_rho[0] |
| 133 | +``` |
| 134 | + |
| 135 | +**Step 11** Now calulate the difference between the LFRic regridded data and native UM data |
| 136 | + |
| 137 | +```python tags=[] |
| 138 | +difference = result - um_rho_t0 |
| 139 | +``` |
| 140 | + |
| 141 | +**Step 12** Now plot the original UM data and the regridded LFRic data and the difference side by side. \ |
| 142 | +(hint: use plt.subplot(1,3,1) and try adding a title and coastlines to the plot) |
| 143 | + |
| 144 | +```python |
| 145 | +qplt.plt.figure(figsize=(20,12)) |
| 146 | + |
| 147 | +qplt.plt.subplot(1, 3, 1) |
| 148 | +qplt.pcolormesh(result) |
| 149 | +qplt.plt.title("LFRic data") |
| 150 | +qplt.plt.gca().coastlines() |
| 151 | + |
| 152 | +qplt.plt.subplot(1, 3, 2) |
| 153 | +qplt.pcolormesh(um_rho_t0) |
| 154 | +qplt.plt.title("UM data") |
| 155 | +qplt.plt.gca().coastlines() |
| 156 | + |
| 157 | +qplt.plt.subplot(1, 3, 3) |
| 158 | +qplt.pcolormesh(difference, cmap="bwr") |
| 159 | +qplt.plt.title('Difference') |
| 160 | +qplt.plt.gca().coastlines() |
| 161 | + |
| 162 | +qplt.plt.show() |
| 163 | +``` |
| 164 | + |
| 165 | +```python |
| 166 | + |
| 167 | +``` |
0 commit comments