-
Notifications
You must be signed in to change notification settings - Fork 673
Labels
Needs info❔More information neededMore information needed
Description
Please make sure these conditions are met
- I have checked that this issue has not already been reported.
- I have confirmed this bug exists on the latest version of scanpy.
- (optional) I have confirmed this bug exists on the main branch of scanpy.
What happened?
sc.tl.dpt was successfully done. But when I want to plot the result of dpt,the error comes out
Minimal code sample
sc.tl.dpt(a1,n_branchings=2)
sc.pl.dpt_groups_pseudotime(a1)
sc.pl.dpt_timeseries(a1)Error output
Error in dpt_timeseries:
WARNING: Plotting more than 100 genes might take some while, consider selecting only highly variable genes, for example.
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
TypeError: float() argument must be a string or a real number, not 'csr_matrix'
The above exception was the direct cause of the following exception:
ValueError Traceback (most recent call last)
Cell In[85], line 1
----> 1 sc.pl.dpt_timeseries(a1)
File D:\anaconda\Lib\site-packages\legacy_api_wrap\__init__.py:80, in legacy_api.<locals>.wrapper.<locals>.fn_compatible(*args_all, **kw)
77 @wraps(fn)
78 def fn_compatible(*args_all: P.args, **kw: P.kwargs) -> R:
79 if len(args_all) <= n_positional:
---> 80 return fn(*args_all, **kw)
82 args_pos: P.args
83 args_pos, args_rest = args_all[:n_positional], args_all[n_positional:]
File D:\anaconda\Lib\site-packages\scanpy\plotting\_tools\__init__.py:245, in dpt_timeseries(adata, color_map, show, save, as_heatmap, marker)
242 # only if number of genes is not too high
243 if as_heatmap:
244 # plot time series as heatmap, as in Haghverdi et al. (2016), Fig. 1d
--> 245 timeseries_as_heatmap(
246 adata.X[adata.obs["dpt_order_indices"].values],
247 var_names=adata.var_names,
248 highlights_x=adata.uns["dpt_changepoints"],
249 color_map=color_map,
250 )
251 else:
252 # plot time series as gene expression vs time
253 timeseries(
254 adata.X[adata.obs["dpt_order_indices"].values],
255 var_names=adata.var_names,
(...)
258 marker=marker,
259 )
File D:\anaconda\Lib\site-packages\scanpy\plotting\_utils.py:227, in timeseries_as_heatmap(X, var_names, highlights_x, color_map)
223 x_new[:, _hold:] = X[:, hold:]
225 _, ax = plt.subplots(figsize=(1.5 * 4, 2 * 4))
226 img = ax.imshow(
--> 227 np.array(X, dtype=np.float_),
228 aspect="auto",
229 interpolation="nearest",
230 cmap=color_map,
231 )
232 plt.colorbar(img, shrink=0.5)
233 plt.yticks(range(X.shape[0]), var_names)
ValueError: setting an array element with a sequence.Error in dpt_groups_pseudotime:
ValueError Traceback (most recent call last)
Cell In[91], line 1
----> 1 sc.pl.dpt_groups_pseudotime(a1)
File D:\anaconda\Lib\site-packages\legacy_api_wrap\__init__.py:80, in legacy_api.<locals>.wrapper.<locals>.fn_compatible(*args_all, **kw)
77 @wraps(fn)
78 def fn_compatible(*args_all: P.args, **kw: P.kwargs) -> R:
79 if len(args_all) <= n_positional:
---> 80 return fn(*args_all, **kw)
82 args_pos: P.args
83 args_pos, args_rest = args_all[:n_positional], args_all[n_positional:]
File D:\anaconda\Lib\site-packages\scanpy\plotting\_tools\__init__.py:276, in dpt_groups_pseudotime(adata, color_map, palette, show, save, marker)
274 """Plot groups and pseudotime."""
275 _, (ax_grp, ax_ord) = plt.subplots(2, 1)
--> 276 timeseries_subplot(
277 adata.obs["dpt_groups"].cat.codes,
278 time=adata.obs["dpt_order"].values,
279 color=np.asarray(adata.obs["dpt_groups"]),
280 highlights_x=adata.uns["dpt_changepoints"],
281 ylabel="dpt groups",
282 yticks=(
283 np.arange(len(adata.obs["dpt_groups"].cat.categories), dtype=int)
284 if len(adata.obs["dpt_groups"].cat.categories) < 5
285 else None
286 ),
287 palette=palette,
288 ax=ax_grp,
289 marker=marker,
290 )
291 timeseries_subplot(
292 adata.obs["dpt_pseudotime"].values,
293 time=adata.obs["dpt_order"].values,
(...)
301 marker=marker,
302 )
303 savefig_or_show("dpt_groups_pseudotime", save=save, show=show)
File D:\anaconda\Lib\site-packages\scanpy\plotting\_utils.py:140, in timeseries_subplot(X, time, color, var_names, highlights_x, xlabel, ylabel, yticks, xlim, legend, palette, color_map, ax, marker)
138 x_range = np.arange(X.shape[0]) if time is None else time
139 if X.ndim == 1:
--> 140 X = X[:, None]
141 if X.shape[1] > 1:
142 colors = palette[: X.shape[1]].by_key()["color"]
File ~\AppData\Roaming\Python\Python311\site-packages\pandas\core\series.py:1153, in Series.__getitem__(self, key)
1150 key = np.asarray(key, dtype=bool)
1151 return self._get_rows_with_mask(key)
-> 1153 return self._get_with(key)
File ~\AppData\Roaming\Python\Python311\site-packages\pandas\core\series.py:1163, in Series._get_with(self, key)
1158 raise TypeError(
1159 "Indexing a Series with DataFrame is not "
1160 "supported, use the appropriate DataFrame column"
1161 )
1162 elif isinstance(key, tuple):
-> 1163 return self._get_values_tuple(key)
1165 elif not is_list_like(key):
1166 # e.g. scalars that aren't recognized by lib.is_scalar, GH#32684
1167 return self.loc[key]
File ~\AppData\Roaming\Python\Python311\site-packages\pandas\core\series.py:1203, in Series._get_values_tuple(self, key)
1198 if com.any_none(*key):
1199 # mpl compat if we look up e.g. ser[:, np.newaxis];
1200 # see tests.series.timeseries.test_mpl_compat_hack
1201 # the asarray is needed to avoid returning a 2D DatetimeArray
1202 result = np.asarray(self._values[key])
-> 1203 disallow_ndim_indexing(result)
1204 return result
1206 if not isinstance(self.index, MultiIndex):
File ~\AppData\Roaming\Python\Python311\site-packages\pandas\core\indexers\utils.py:341, in disallow_ndim_indexing(result)
333 """
334 Helper function to disallow multi-dimensional indexing on 1D Series/Index.
335
(...)
338 in GH#30588.
339 """
340 if np.ndim(result) > 1:
--> 341 raise ValueError(
342 "Multi-dimensional indexing (e.g. `obj[:, None]`) is no longer "
343 "supported. Convert to a numpy array before indexing instead."
344 )
ValueError: Multi-dimensional indexing (e.g. `obj[:, None]`) is no longer supported. Convert to a numpy array before indexing instead.Versions
anndata 0.10.5.post1
scanpy 1.10.1
-----
PIL 9.4.0
annoy NA
anyio NA
asttokens NA
attr 22.1.0
autograd NA
autograd_gamma NA
babel 2.11.0
backcall 0.2.0
bbknn 1.6.0
beta_ufunc NA
binom_ufunc NA
bottleneck 1.3.5
brotli NA
certifi 2024.02.02
cffi 1.15.1
chardet 4.0.0
charset_normalizer 2.0.4
cloudpickle 2.2.1
colorama 0.4.6
comm 0.1.2
cycler 0.10.0
cython_runtime NA
cytoolz 0.12.0
dask 2023.6.0
dateutil 2.8.2
debugpy 1.6.7
decorator 5.1.1
defusedxml 0.7.1
dill 0.3.6
entrypoints 0.4
executing 0.8.3
fastjsonschema NA
formulaic 1.0.1
future 0.18.3
gseapy 1.1.2
h5py 3.9.0
hypergeom_ufunc NA
idna 3.4
igraph 0.11.5
interface_meta 1.3.0
invgauss_ufunc NA
ipykernel 6.25.0
ipython_genutils 0.2.0
ipywidgets 8.0.4
jedi 0.18.1
jinja2 3.1.2
joblib 1.2.0
json5 NA
jsonpointer 2.1
jsonschema 4.17.3
jupyter_server 1.23.4
jupyterlab_server 2.22.0
kiwisolver 1.4.4
legacy_api_wrap NA
leidenalg 0.10.2
lifelines 0.28.0
llvmlite 0.42.0
louvain 0.8.2
lz4 4.3.2
markupsafe 2.1.1
matplotlib 3.7.2
matplotlib_inline 0.1.6
mpl_toolkits NA
natsort 8.4.0
nbformat 5.9.2
nbinom_ufunc NA
ncf_ufunc NA
nct_ufunc NA
ncx2_ufunc NA
numba 0.59.1
numexpr 2.8.4
numpy 1.26.4
packaging 23.1
pandas 2.2.2
parso 0.8.3
patsy 0.5.3
pickleshare 0.7.5
pkg_resources NA
platformdirs 3.10.0
plotly 5.9.0
prometheus_client NA
prompt_toolkit 3.0.36
psutil 5.9.0
pure_eval 0.2.2
pvectorc NA
pyarrow 11.0.0
pycparser 2.21
pydev_ipython NA
pydevconsole NA
pydevd 2.9.5
pydevd_file_utils NA
pydevd_plugins NA
pydevd_tracing NA
pygments 2.15.1
pynndescent 0.5.11
pyparsing 3.0.9
pyrsistent NA
pythoncom NA
pytz 2023.3.post1
pywintypes NA
requests 2.31.0
rfc3339_validator 0.1.4
rfc3986_validator 0.1.1
ruamel NA
scipy 1.11.1
seaborn 0.13.2
send2trash NA
session_info 1.0.0
setuptools 69.5.1
six 1.16.0
skewnorm_ufunc NA
sklearn 1.3.0
sniffio 1.2.0
socks 1.7.1
sparse 0.15.1
sphinxcontrib NA
stack_data 0.2.0
statsmodels 0.14.0
tblib 1.7.0
terminado 0.17.1
texttable 1.7.0
threadpoolctl 2.2.0
tlz 0.12.0
toolz 0.12.0
torch 2.2.1+cpu
torchgen NA
tornado 6.3.2
tqdm 4.65.0
traitlets 5.7.1
typing_extensions NA
umap 0.5.5
urllib3 1.26.16
wcwidth 0.2.5
websocket 0.58.0
win32api NA
win32com NA
win32con NA
win32trace NA
winerror NA
winpty 2.0.10
wrapt 1.14.1
xxhash 2.0.2
yaml 6.0
zipp NA
zmq 23.2.0
zope NA
-----
IPython 8.15.0
jupyter_client 7.4.9
jupyter_core 5.3.0
jupyterlab 3.6.3
notebook 6.5.4
-----
Python 3.11.5 | packaged by Anaconda, Inc. | (main, Sep 11 2023, 13:26:23) [MSC v.1916 64 bit (AMD64)]
Windows-10-10.0.22631-SP0
-----
Session information updated at 2024-06-02 17:20
Metadata
Metadata
Assignees
Labels
Needs info❔More information neededMore information needed