|
| 1 | +/* |
| 2 | + * Copyright 2025-present ScyllaDB |
| 3 | + * SPDX-License-Identifier: LicenseRef-ScyllaDB-Source-Available-1.0 |
| 4 | + */ |
| 5 | + |
| 6 | +use crate::common::*; |
| 7 | +use crate::tests::*; |
| 8 | +use std::time::Duration; |
| 9 | +use tracing::info; |
| 10 | + |
| 11 | +pub(crate) async fn new() -> TestCase { |
| 12 | + let timeout = Duration::from_secs(30); |
| 13 | + TestCase::empty() |
| 14 | + .with_init(timeout, init) |
| 15 | + .with_cleanup(timeout, cleanup) |
| 16 | + .with_test( |
| 17 | + "vector_similarity_function_returns_expected_results", |
| 18 | + timeout, |
| 19 | + vector_similarity_function_returns_expected_results, |
| 20 | + ) |
| 21 | + .with_test( |
| 22 | + "vector_similarity_function_with_clustering_key", |
| 23 | + timeout, |
| 24 | + vector_similarity_function_with_clustering_key, |
| 25 | + ) |
| 26 | + .with_test( |
| 27 | + "vector_similarity_function_with_multi_column_partition_key", |
| 28 | + timeout, |
| 29 | + vector_similarity_function_with_multi_column_partition_key, |
| 30 | + ) |
| 31 | +} |
| 32 | + |
| 33 | +async fn vector_similarity_function_returns_expected_results(actors: TestActors) { |
| 34 | + info!("started"); |
| 35 | + |
| 36 | + let (session, client) = prepare_connection(&actors).await; |
| 37 | + |
| 38 | + let keyspace = create_keyspace(&session).await; |
| 39 | + let table = create_table(&session, "pk INT PRIMARY KEY, v VECTOR<FLOAT, 3>", None).await; |
| 40 | + |
| 41 | + // Insert test data |
| 42 | + let embeddings: Vec<Vec<f32>> = vec![ |
| 43 | + vec![1.0, 2.0, 3.0], |
| 44 | + vec![4.0, 5.0, 6.0], |
| 45 | + vec![7.0, 8.0, 9.0], |
| 46 | + ]; |
| 47 | + for (i, embedding) in embeddings.into_iter().enumerate() { |
| 48 | + session |
| 49 | + .query_unpaged( |
| 50 | + format!("INSERT INTO {table} (pk, v) VALUES (?, ?)"), |
| 51 | + (i as i32, &embedding), |
| 52 | + ) |
| 53 | + .await |
| 54 | + .expect("failed to insert data"); |
| 55 | + } |
| 56 | + |
| 57 | + let index = create_index( |
| 58 | + &session, |
| 59 | + &client, |
| 60 | + &table, |
| 61 | + "v", |
| 62 | + Some("{'similarity_function' : 'EUCLIDEAN'}"), |
| 63 | + ) |
| 64 | + .await; |
| 65 | + |
| 66 | + wait_for( |
| 67 | + || async { client.count(&index.keyspace, &index.index).await == Some(3) }, |
| 68 | + "Waiting for 3 vectors to be indexed", |
| 69 | + Duration::from_secs(5), |
| 70 | + ) |
| 71 | + .await; |
| 72 | + |
| 73 | + // Check if the query returns the expected distances |
| 74 | + let rows = get_query_results( |
| 75 | + format!( |
| 76 | + "SELECT pk, vector_similarity() FROM {table} ORDER BY v ANN OF [0.0, 0.0, 0.0] LIMIT 5" |
| 77 | + ), |
| 78 | + &session, |
| 79 | + ) |
| 80 | + .await; |
| 81 | + assert_eq!(rows.len(), 3); |
| 82 | + |
| 83 | + // Expected results are calculated using Euclidean distance formula |
| 84 | + let expected_distances = vec![(0, 14.0), (1, 77.0), (2, 194.0)]; |
| 85 | + for (i, row) in rows.iter().enumerate() { |
| 86 | + let pk: i32 = row.columns[0].as_ref().unwrap().as_int().unwrap(); |
| 87 | + let similarity: f32 = row.columns[1].as_ref().unwrap().as_float().unwrap(); |
| 88 | + assert_eq!( |
| 89 | + (pk, similarity), |
| 90 | + expected_distances[i], |
| 91 | + "Row {i} does not match expected result" |
| 92 | + ); |
| 93 | + } |
| 94 | + |
| 95 | + // Drop keyspace |
| 96 | + session |
| 97 | + .query_unpaged(format!("DROP KEYSPACE {keyspace}"), ()) |
| 98 | + .await |
| 99 | + .expect("failed to drop a keyspace"); |
| 100 | + |
| 101 | + info!("finished"); |
| 102 | +} |
| 103 | + |
| 104 | +async fn vector_similarity_function_with_clustering_key(actors: TestActors) { |
| 105 | + info!("started"); |
| 106 | + |
| 107 | + let (session, client) = prepare_connection(&actors).await; |
| 108 | + |
| 109 | + let keyspace = create_keyspace(&session).await; |
| 110 | + let table = create_table( |
| 111 | + &session, |
| 112 | + "pk INT, ck INT, v VECTOR<FLOAT, 3>, PRIMARY KEY (pk, ck)", |
| 113 | + None, |
| 114 | + ) |
| 115 | + .await; |
| 116 | + |
| 117 | + // Insert test data |
| 118 | + let embeddings: Vec<Vec<f32>> = vec![ |
| 119 | + vec![1.0, 2.0, 3.0], |
| 120 | + vec![4.0, 5.0, 6.0], |
| 121 | + vec![7.0, 8.0, 9.0], |
| 122 | + ]; |
| 123 | + for (i, embedding) in embeddings.into_iter().enumerate() { |
| 124 | + session |
| 125 | + .query_unpaged( |
| 126 | + format!("INSERT INTO {table} (pk, ck, v) VALUES (?, ?, ?)"), |
| 127 | + (123, i as i32, &embedding), |
| 128 | + ) |
| 129 | + .await |
| 130 | + .expect("failed to insert data"); |
| 131 | + } |
| 132 | + |
| 133 | + let index = create_index( |
| 134 | + &session, |
| 135 | + &client, |
| 136 | + &table, |
| 137 | + "v", |
| 138 | + Some("{'similarity_function' : 'EUCLIDEAN'}"), |
| 139 | + ) |
| 140 | + .await; |
| 141 | + |
| 142 | + wait_for( |
| 143 | + || async { client.count(&index.keyspace, &index.index).await == Some(3) }, |
| 144 | + "Waiting for 3 vectors to be indexed", |
| 145 | + Duration::from_secs(5), |
| 146 | + ) |
| 147 | + .await; |
| 148 | + |
| 149 | + // Check if the query returns the expected distances |
| 150 | + let rows = get_query_results( |
| 151 | + format!( |
| 152 | + "SELECT ck, vector_similarity() FROM {table} ORDER BY v ANN OF [0.0, 0.0, 0.0] LIMIT 5" |
| 153 | + ), |
| 154 | + &session, |
| 155 | + ) |
| 156 | + .await; |
| 157 | + assert_eq!(rows.len(), 3); |
| 158 | + |
| 159 | + // Expected results are calculated using Euclidean distance formula |
| 160 | + let expected_distances = vec![(0, 14.0), (1, 77.0), (2, 194.0)]; |
| 161 | + for (i, row) in rows.iter().enumerate() { |
| 162 | + let ck: i32 = row.columns[0].as_ref().unwrap().as_int().unwrap(); |
| 163 | + let similarity: f32 = row.columns[1].as_ref().unwrap().as_float().unwrap(); |
| 164 | + assert_eq!( |
| 165 | + (ck, similarity), |
| 166 | + expected_distances[i], |
| 167 | + "Row {i} does not match expected result" |
| 168 | + ); |
| 169 | + } |
| 170 | + |
| 171 | + // Drop keyspace |
| 172 | + session |
| 173 | + .query_unpaged(format!("DROP KEYSPACE {keyspace}"), ()) |
| 174 | + .await |
| 175 | + .expect("failed to drop a keyspace"); |
| 176 | + |
| 177 | + info!("finished"); |
| 178 | +} |
| 179 | + |
| 180 | +async fn vector_similarity_function_with_multi_column_partition_key(actors: TestActors) { |
| 181 | + info!("started"); |
| 182 | + |
| 183 | + let (session, client) = prepare_connection(&actors).await; |
| 184 | + |
| 185 | + let keyspace = create_keyspace(&session).await; |
| 186 | + let table = create_table( |
| 187 | + &session, |
| 188 | + "pk1 INT, pk2 INT, v VECTOR<FLOAT, 3>, PRIMARY KEY ((pk1, pk2))", |
| 189 | + None, |
| 190 | + ) |
| 191 | + .await; |
| 192 | + |
| 193 | + // Insert test data |
| 194 | + let embeddings: Vec<Vec<f32>> = vec![ |
| 195 | + vec![1.0, 2.0, 3.0], |
| 196 | + vec![4.0, 5.0, 6.0], |
| 197 | + vec![7.0, 8.0, 9.0], |
| 198 | + ]; |
| 199 | + for (i, embedding) in embeddings.into_iter().enumerate() { |
| 200 | + session |
| 201 | + .query_unpaged( |
| 202 | + format!("INSERT INTO {table} (pk1, pk2, v) VALUES (?, ?, ?)"), |
| 203 | + (123, i as i32, &embedding), |
| 204 | + ) |
| 205 | + .await |
| 206 | + .expect("failed to insert data"); |
| 207 | + } |
| 208 | + |
| 209 | + let index = create_index( |
| 210 | + &session, |
| 211 | + &client, |
| 212 | + &table, |
| 213 | + "v", |
| 214 | + Some("{'similarity_function' : 'EUCLIDEAN'}"), |
| 215 | + ) |
| 216 | + .await; |
| 217 | + |
| 218 | + wait_for( |
| 219 | + || async { client.count(&index.keyspace, &index.index).await == Some(3) }, |
| 220 | + "Waiting for 3 vectors to be indexed", |
| 221 | + Duration::from_secs(5), |
| 222 | + ) |
| 223 | + .await; |
| 224 | + |
| 225 | + // Check if the query returns the expected distances |
| 226 | + let rows = get_query_results( |
| 227 | + format!( |
| 228 | + "SELECT pk2, vector_similarity() FROM {table} ORDER BY v ANN OF [0.0, 0.0, 0.0] LIMIT 5" |
| 229 | + ), |
| 230 | + &session, |
| 231 | + ) |
| 232 | + .await; |
| 233 | + assert_eq!(rows.len(), 3); |
| 234 | + |
| 235 | + // Expected results are calculated using Euclidean distance formula |
| 236 | + let expected_distances = vec![(0, 14.0), (1, 77.0), (2, 194.0)]; |
| 237 | + for (i, row) in rows.iter().enumerate() { |
| 238 | + let pk: i32 = row.columns[0].as_ref().unwrap().as_int().unwrap(); |
| 239 | + let similarity: f32 = row.columns[1].as_ref().unwrap().as_float().unwrap(); |
| 240 | + assert_eq!( |
| 241 | + (pk, similarity), |
| 242 | + expected_distances[i], |
| 243 | + "Row {i} does not match expected result" |
| 244 | + ); |
| 245 | + } |
| 246 | + |
| 247 | + // Drop keyspace |
| 248 | + session |
| 249 | + .query_unpaged(format!("DROP KEYSPACE {keyspace}"), ()) |
| 250 | + .await |
| 251 | + .expect("failed to drop a keyspace"); |
| 252 | + |
| 253 | + info!("finished"); |
| 254 | +} |
0 commit comments