diff --git a/mlinsights/mlmodel/interval_regressor.py b/mlinsights/mlmodel/interval_regressor.py index 6d5c5b8f..c01afb9e 100644 --- a/mlinsights/mlmodel/interval_regressor.py +++ b/mlinsights/mlmodel/interval_regressor.py @@ -6,7 +6,6 @@ import numpy.random from sklearn.base import RegressorMixin, clone, BaseEstimator from sklearn.utils._joblib import Parallel, delayed -from sklearn.utils.fixes import _joblib_parallel_args try: from tqdm import tqdm except ImportError: # pragma: no cover @@ -93,7 +92,7 @@ def _fit_piecewise_estimator(i, est, X, y, sample_weight, alpha): self.estimators_ = \ Parallel(n_jobs=self.n_jobs, verbose=verbose, - **_joblib_parallel_args(prefer='threads'))( + prefer='threads')( delayed(_fit_piecewise_estimator)( i, estimators[i], X, y, sample_weight, self.alpha) for i in loop) diff --git a/mlinsights/mlmodel/piecewise_estimator.py b/mlinsights/mlmodel/piecewise_estimator.py index d56d31bc..769c87ec 100644 --- a/mlinsights/mlmodel/piecewise_estimator.py +++ b/mlinsights/mlmodel/piecewise_estimator.py @@ -10,7 +10,6 @@ from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.preprocessing import KBinsDiscretizer from sklearn.utils._joblib import Parallel, delayed -from sklearn.utils.fixes import _joblib_parallel_args try: from tqdm import tqdm except ImportError: # pragma: no cover @@ -260,8 +259,7 @@ def fit(self, X, y, sample_weight=None): rnd = None self.estimators_ = \ - Parallel(n_jobs=self.n_jobs, verbose=verbose, - **_joblib_parallel_args(prefer='threads'))( + Parallel(n_jobs=self.n_jobs, verbose=verbose, prefer='threads')( delayed(_fit_piecewise_estimator)( i, estimators[i], X, y, sample_weight, association, nb_classes, rnd) for i in loop) @@ -288,7 +286,7 @@ def _apply_predict_method(self, X, method, parallelized, dimout): association = self.transform_bins(X) - indpred = Parallel(n_jobs=self.n_jobs, **_joblib_parallel_args(prefer='threads'))( + indpred = Parallel(n_jobs=self.n_jobs, prefer='threads')( delayed(parallelized)(i, model, X, association) for i, model in enumerate(self.estimators_))