|
| 1 | +""" |
| 2 | +JSON returns list when the original dynamic shapes are list or tuple |
| 3 | +==================================================================== |
| 4 | +
|
| 5 | +Dynamic Shapes After JSON |
| 6 | ++++++++++++++++++++++++++ |
| 7 | +""" |
| 8 | + |
| 9 | +import json |
| 10 | +import pprint |
| 11 | +import torch |
| 12 | +from onnx_diagnostic import doc |
| 13 | +from onnx_diagnostic.helpers import string_type |
| 14 | +from onnx_diagnostic.helpers.cache_helper import make_dynamic_cache |
| 15 | +from onnx_diagnostic.export.shape_helper import all_dynamic_shape_from_inputs |
| 16 | + |
| 17 | +bsize, nheads, slen, dim = 2, 1, 30, 96 |
| 18 | + |
| 19 | +inputs = dict( |
| 20 | + input_mask_position=( |
| 21 | + torch.randint(15, size=(2, 3), dtype=torch.int64), |
| 22 | + torch.randint(1, size=(2, 33), dtype=torch.int64), |
| 23 | + torch.arange(3, dtype=torch.int64), |
| 24 | + ), |
| 25 | + past_key_values=make_dynamic_cache( |
| 26 | + [(torch.randn(bsize, nheads, slen, dim), torch.randn(bsize, nheads, slen, dim))] |
| 27 | + ), |
| 28 | +) |
| 29 | + |
| 30 | +print(string_type(inputs, with_shape=True)) |
| 31 | + |
| 32 | +# %% |
| 33 | +# Function :func:`onnx_diagnostic.export.shape_helper.all_dynamic_shape_from_inputs` |
| 34 | +# produces the corresponding dynamic shapes assuming they are all dynamic. |
| 35 | +ds = all_dynamic_shape_from_inputs(inputs) |
| 36 | +pprint.pprint(ds) |
| 37 | + |
| 38 | +# %% |
| 39 | +# Converted into JSON. |
| 40 | + |
| 41 | +json_str = json.dumps(ds, indent=2, ensure_ascii=False) |
| 42 | +print(json_str) |
| 43 | + |
| 44 | +# %% |
| 45 | +# Restoration. |
| 46 | +ds2 = json.loads(json_str) |
| 47 | +pprint.pprint(ds2) |
| 48 | + |
| 49 | +# %% |
| 50 | +# tuple are replaced by list. |
| 51 | + |
| 52 | +# The trick |
| 53 | +# +++++++++ |
| 54 | + |
| 55 | + |
| 56 | +def flatten_unflatten_like_dynamic_shapes(obj): |
| 57 | + if isinstance(obj, torch.Tensor): |
| 58 | + return obj |
| 59 | + flat, spec = torch.utils._pytree.tree_flatten(obj) |
| 60 | + start = 0 |
| 61 | + end = 0 |
| 62 | + subtrees = [] |
| 63 | + for subspec in spec.children_specs: |
| 64 | + end += subspec.num_leaves |
| 65 | + value = subspec.unflatten(flat[start:end]) |
| 66 | + value = flatten_unflatten_like_dynamic_shapes(value) |
| 67 | + subtrees.append(value) |
| 68 | + start = end |
| 69 | + if spec.type is dict or spec.context: |
| 70 | + return dict(zip(spec.context, subtrees)) |
| 71 | + if spec.type is tuple: |
| 72 | + return tuple(subtrees) |
| 73 | + return subtrees |
| 74 | + |
| 75 | + |
| 76 | +def _align(inputs, ds): |
| 77 | + if isinstance(inputs, torch.Tensor): |
| 78 | + return ds |
| 79 | + if isinstance(inputs, tuple): |
| 80 | + return tuple(_align(o, d) for o, d in zip(inputs, ds)) |
| 81 | + if isinstance(inputs, list): |
| 82 | + return [_align(o, d) for o, d in zip(inputs, ds)] |
| 83 | + if isinstance(inputs, dict): |
| 84 | + return {k: _align(inputs[k], d) for k, d in ds.items()} |
| 85 | + raise TypeError(f"Unexpected types inputs is {type(inputs)}, ds is {type(ds)}") |
| 86 | + |
| 87 | + |
| 88 | +def fix_dynamic_shapes(inputs, dynamic_shapes): |
| 89 | + flat_unflat_inputs = flatten_unflatten_like_dynamic_shapes(inputs) |
| 90 | + return _align(flat_unflat_inputs, dynamic_shapes) |
| 91 | + |
| 92 | + |
| 93 | +fixed_ds = fix_dynamic_shapes(inputs, ds2) |
| 94 | +pprint.pprint(fixed_ds) |
| 95 | + |
| 96 | +# %% |
| 97 | +# The code changed tuple into list as expected. |
| 98 | +assert isinstance(ds2["input_mask_position"], list) |
| 99 | +assert isinstance(fixed_ds["input_mask_position"], tuple) |
| 100 | + |
| 101 | + |
| 102 | +# %% |
| 103 | + |
| 104 | +doc.plot_legend("dynamic shapes\nto json\nfrom json", "torch.export.export", "green") |
0 commit comments