|
| 1 | +import unittest |
| 2 | +from typing import Optional |
| 3 | +import numpy as np |
| 4 | +from onnx import ModelProto, TensorProto |
| 5 | +from onnx.checker import check_model |
| 6 | +import onnx.helper as oh |
| 7 | +import onnx.numpy_helper as onh |
| 8 | +import torch |
| 9 | +from onnx_diagnostic.ext_test_case import ( |
| 10 | + ExtTestCase, |
| 11 | + hide_stdout, |
| 12 | + ignore_warnings, |
| 13 | + requires_cuda, |
| 14 | +) |
| 15 | +from onnx_diagnostic.reference import ExtendedReferenceEvaluator, OnnxruntimeEvaluator |
| 16 | + |
| 17 | +TFLOAT = TensorProto.FLOAT |
| 18 | + |
| 19 | + |
| 20 | +class TestOnnxruntimeEvaluatoruator(ExtTestCase): |
| 21 | + def _range(self, *shape, bias: Optional[float] = None): |
| 22 | + n = np.prod(shape) |
| 23 | + x = np.arange(n).astype(np.float32) / n |
| 24 | + if bias: |
| 25 | + x = x + bias |
| 26 | + return x.reshape(tuple(shape)).astype(np.float32) |
| 27 | + |
| 28 | + def _get_model(self) -> ModelProto: |
| 29 | + model = oh.make_model( |
| 30 | + oh.make_graph( |
| 31 | + [ |
| 32 | + oh.make_node("Unsqueeze", ["X", "zero"], ["xu1"]), |
| 33 | + oh.make_node("Unsqueeze", ["xu1", "un"], ["xu2"]), |
| 34 | + oh.make_node("Reshape", ["xu2", "shape1"], ["xm1"]), |
| 35 | + oh.make_node("Reshape", ["Y", "shape2"], ["xm2c"]), |
| 36 | + oh.make_node("Cast", ["xm2c"], ["xm2"], to=1), |
| 37 | + oh.make_node("MatMul", ["xm1", "xm2"], ["xm"]), |
| 38 | + oh.make_node("Reshape", ["xm", "shape3"], ["Z"]), |
| 39 | + ], |
| 40 | + "dummy", |
| 41 | + [ |
| 42 | + oh.make_tensor_value_info("X", TFLOAT, [32, 128]), |
| 43 | + oh.make_tensor_value_info("Y", TFLOAT, [3, 5, 128, 64]), |
| 44 | + ], |
| 45 | + [oh.make_tensor_value_info("Z", TFLOAT, [3, 5, 32, 64])], |
| 46 | + [ |
| 47 | + onh.from_array(np.array([0], dtype=np.int64), name="zero"), |
| 48 | + onh.from_array(np.array([1], dtype=np.int64), name="un"), |
| 49 | + onh.from_array(np.array([1, 32, 128], dtype=np.int64), name="shape1"), |
| 50 | + onh.from_array(np.array([15, 128, 64], dtype=np.int64), name="shape2"), |
| 51 | + onh.from_array(np.array([3, 5, 32, 64], dtype=np.int64), name="shape3"), |
| 52 | + ], |
| 53 | + ), |
| 54 | + ir_version=9, |
| 55 | + opset_imports=[oh.make_opsetid("", 18)], |
| 56 | + ) |
| 57 | + check_model(model) |
| 58 | + return model |
| 59 | + |
| 60 | + @ignore_warnings(DeprecationWarning) |
| 61 | + def test_ort_eval(self): |
| 62 | + model = self._get_model() |
| 63 | + |
| 64 | + feeds = {"X": self._range(32, 128), "Y": self._range(3, 5, 128, 64)} |
| 65 | + ref = ExtendedReferenceEvaluator(model, verbose=10) |
| 66 | + expected, out, _ = self.capture(lambda: ref.run(None, feeds)[0]) |
| 67 | + self.assertIn("Reshape(xm, shape3) -> Z", out) |
| 68 | + |
| 69 | + ort_eval = OnnxruntimeEvaluator(model, verbose=10, opsets=20) |
| 70 | + got, out, _ = self.capture(lambda: ort_eval.run(None, feeds)[0]) |
| 71 | + self.assertEqualArray(expected, got, atol=1e-4) |
| 72 | + self.assertIn("Reshape(xm, shape3) -> Z", out) |
| 73 | + |
| 74 | + @ignore_warnings(DeprecationWarning) |
| 75 | + @requires_cuda() |
| 76 | + @hide_stdout() |
| 77 | + def test_ort_eval_cuda(self): |
| 78 | + model = self._get_model() |
| 79 | + |
| 80 | + feeds = {"X": self._range(32, 128), "Y": self._range(3, 5, 128, 64)} |
| 81 | + ref = ExtendedReferenceEvaluator(model, verbose=10) |
| 82 | + expected = ref.run(None, feeds)[0] |
| 83 | + |
| 84 | + ort_eval = OnnxruntimeEvaluator(model, verbose=10, opsets=20, providers="cuda") |
| 85 | + got = ort_eval.run(None, feeds)[0] |
| 86 | + self.assertEqualArray(expected, got, atol=1e-1) |
| 87 | + |
| 88 | + @ignore_warnings(DeprecationWarning) |
| 89 | + @hide_stdout() |
| 90 | + def test_ort_eval_node_proto(self): |
| 91 | + model = self._get_model() |
| 92 | + |
| 93 | + feeds = {"X": self._range(32, 128), "zero": np.array([0], dtype=np.int64)} |
| 94 | + ref = ExtendedReferenceEvaluator(model.graph.node[0], verbose=10) |
| 95 | + expected = ref.run(None, feeds) |
| 96 | + |
| 97 | + ort_eval = OnnxruntimeEvaluator(model.graph.node[0], verbose=10, opsets=20) |
| 98 | + got = ort_eval.run(None, feeds) |
| 99 | + self.assertEqualArrayAny(expected, got, atol=1e-4) |
| 100 | + self.assertIsInstance(expected[0], np.ndarray) |
| 101 | + self.assertIsInstance(got[0], np.ndarray) |
| 102 | + |
| 103 | + @ignore_warnings(DeprecationWarning) |
| 104 | + @hide_stdout() |
| 105 | + def test_ort_eval_node_proto_torch(self): |
| 106 | + model = self._get_model() |
| 107 | + |
| 108 | + feeds_np = {"X": self._range(32, 128), "zero": np.array([0], dtype=np.int64)} |
| 109 | + feeds = {k: torch.from_numpy(v) for k, v in feeds_np.items()} |
| 110 | + ref = ExtendedReferenceEvaluator(model.graph.node[0], verbose=10) |
| 111 | + expected = ref.run(None, feeds_np) |
| 112 | + |
| 113 | + ort_eval = OnnxruntimeEvaluator(model.graph.node[0], verbose=10, opsets=20) |
| 114 | + got = ort_eval.run(None, feeds) |
| 115 | + self.assertIsInstance(got[0], torch.Tensor) |
| 116 | + self.assertEqualArray(expected[0], got[0], atol=1e-4) |
| 117 | + |
| 118 | + @hide_stdout() |
| 119 | + def test_local_function(self): |
| 120 | + new_domain = "custom" |
| 121 | + |
| 122 | + linear_regression = oh.make_function( |
| 123 | + new_domain, |
| 124 | + "LinearRegression", |
| 125 | + ["x", "a", "b"], |
| 126 | + ["y"], |
| 127 | + [ |
| 128 | + oh.make_node("MatMul", ["x", "a"], ["xa"]), |
| 129 | + oh.make_node("Add", ["xa", "b"], ["y"]), |
| 130 | + ], |
| 131 | + [oh.make_opsetid("", 14)], |
| 132 | + [], |
| 133 | + ) |
| 134 | + |
| 135 | + graph = oh.make_graph( |
| 136 | + [ |
| 137 | + oh.make_node("LinearRegression", ["X", "A", "B"], ["Y1"], domain=new_domain), |
| 138 | + oh.make_node("Abs", ["Y1"], ["Y"]), |
| 139 | + ], |
| 140 | + "example", |
| 141 | + [ |
| 142 | + oh.make_tensor_value_info("X", TFLOAT, [None, None]), |
| 143 | + oh.make_tensor_value_info("A", TFLOAT, [None, None]), |
| 144 | + oh.make_tensor_value_info("B", TFLOAT, [None, None]), |
| 145 | + ], |
| 146 | + [oh.make_tensor_value_info("Y", TFLOAT, None)], |
| 147 | + ) |
| 148 | + |
| 149 | + onnx_model = oh.make_model( |
| 150 | + graph, |
| 151 | + opset_imports=[oh.make_opsetid("", 14), oh.make_opsetid(new_domain, 1)], |
| 152 | + functions=[linear_regression], |
| 153 | + ir_version=10, |
| 154 | + ) |
| 155 | + feeds = { |
| 156 | + "X": np.random.randn(3, 3).astype(np.float32), |
| 157 | + "A": np.random.randn(3, 3).astype(np.float32), |
| 158 | + "B": np.random.randn(3, 3).astype(np.float32), |
| 159 | + } |
| 160 | + ref = ExtendedReferenceEvaluator(onnx_model) |
| 161 | + ort_eval = OnnxruntimeEvaluator(onnx_model, verbose=10, opsets=20) |
| 162 | + expected = ref.run(None, feeds) |
| 163 | + got = ort_eval.run(None, feeds) |
| 164 | + self.assertEqualArray(expected[0], got[0]) |
| 165 | + |
| 166 | + |
| 167 | +if __name__ == "__main__": |
| 168 | + unittest.main(verbosity=2) |
0 commit comments