|
5 | 5 | all_dynamic_shape_from_inputs, |
6 | 6 | guess_dynamic_shapes_from_inputs, |
7 | 7 | ) |
| 8 | +from onnx_diagnostic.helpers.cache_helper import ( |
| 9 | + make_dynamic_cache, |
| 10 | + make_sliding_window_cache, |
| 11 | + make_encoder_decoder_cache, |
| 12 | + make_static_cache, |
| 13 | + make_mamba_cache, |
| 14 | +) |
8 | 15 | from onnx_diagnostic.torch_models.hghub import get_untrained_model_with_inputs |
| 16 | +from onnx_diagnostic.torch_export_patches import torch_export_patches |
9 | 17 |
|
10 | 18 |
|
11 | 19 | class TestShapeHelper(ExtTestCase): |
| 20 | + |
| 21 | + @requires_transformers("4.52") |
| 22 | + @requires_torch("2.7.99") |
| 23 | + def test_all_dynamic_shape_from_cache(self): |
| 24 | + cache = make_dynamic_cache([(torch.ones((2, 2)), (torch.ones((2, 2)) * 2))]) |
| 25 | + ds = all_dynamic_shape_from_inputs(cache) |
| 26 | + self.assertEqual([[{0: "d_0_0", 1: "d_0_1"}], [{0: "d_1_0", 1: "d_1_1"}]], ds) |
| 27 | + |
| 28 | + @requires_torch("2.7.99") |
| 29 | + def test_all_dynamic_shape_all_transformers_cache(self): |
| 30 | + caches = [ |
| 31 | + ( |
| 32 | + make_dynamic_cache([(torch.ones((2, 2)), (torch.ones((2, 2)) * 2))]), |
| 33 | + [[{0: "d_0_0", 1: "d_0_1"}], [{0: "d_1_0", 1: "d_1_1"}]], |
| 34 | + ), |
| 35 | + ( |
| 36 | + make_encoder_decoder_cache( |
| 37 | + make_dynamic_cache( |
| 38 | + [ |
| 39 | + (torch.rand((4, 4, 4)), torch.rand((4, 4, 4))), |
| 40 | + (torch.rand((4, 4, 4)), torch.rand((4, 4, 4))), |
| 41 | + (torch.rand((4, 4, 4)), torch.rand((4, 4, 4))), |
| 42 | + ] |
| 43 | + ), |
| 44 | + make_dynamic_cache( |
| 45 | + [ |
| 46 | + (torch.rand((5, 5, 5)), torch.rand((5, 5, 5))), |
| 47 | + (torch.rand((5, 5, 5)), torch.rand((5, 5, 5))), |
| 48 | + (torch.rand((5, 5, 5)), torch.rand((5, 5, 5))), |
| 49 | + ] |
| 50 | + ), |
| 51 | + ), |
| 52 | + [ |
| 53 | + [ |
| 54 | + [ |
| 55 | + {0: "d_0_0", 1: "d_0_1", 2: "d_0_2"}, |
| 56 | + {0: "d_1_0", 1: "d_1_1", 2: "d_1_2"}, |
| 57 | + {0: "d_2_0", 1: "d_2_1", 2: "d_2_2"}, |
| 58 | + ], |
| 59 | + [ |
| 60 | + {0: "d_3_0", 1: "d_3_1", 2: "d_3_2"}, |
| 61 | + {0: "d_4_0", 1: "d_4_1", 2: "d_4_2"}, |
| 62 | + {0: "d_5_0", 1: "d_5_1", 2: "d_5_2"}, |
| 63 | + ], |
| 64 | + ], |
| 65 | + [ |
| 66 | + [ |
| 67 | + {0: "d_6_0", 1: "d_6_1", 2: "d_6_2"}, |
| 68 | + {0: "d_7_0", 1: "d_7_1", 2: "d_7_2"}, |
| 69 | + {0: "d_8_0", 1: "d_8_1", 2: "d_8_2"}, |
| 70 | + ], |
| 71 | + [ |
| 72 | + {0: "d_9_0", 1: "d_9_1", 2: "d_9_2"}, |
| 73 | + {0: "d_10_0", 1: "d_10_1", 2: "d_10_2"}, |
| 74 | + {0: "d_11_0", 1: "d_11_1", 2: "d_11_2"}, |
| 75 | + ], |
| 76 | + ], |
| 77 | + ], |
| 78 | + ), |
| 79 | + ( |
| 80 | + make_sliding_window_cache( |
| 81 | + [ |
| 82 | + (torch.rand((4, 5, 6, 7)), torch.rand((4, 5, 6, 7))), |
| 83 | + (torch.rand((4, 5, 6, 7)), torch.rand((4, 5, 6, 7))), |
| 84 | + (torch.rand((4, 5, 6, 7)), torch.rand((4, 5, 6, 7))), |
| 85 | + ] |
| 86 | + ), |
| 87 | + [ |
| 88 | + [ |
| 89 | + {0: "d_0_0", 1: "d_0_1", 2: "d_0_2", 3: "d_0_3"}, |
| 90 | + {0: "d_1_0", 1: "d_1_1", 2: "d_1_2", 3: "d_1_3"}, |
| 91 | + {0: "d_2_0", 1: "d_2_1", 2: "d_2_2", 3: "d_2_3"}, |
| 92 | + ], |
| 93 | + [ |
| 94 | + {0: "d_3_0", 1: "d_3_1", 2: "d_3_2", 3: "d_3_3"}, |
| 95 | + {0: "d_4_0", 1: "d_4_1", 2: "d_4_2", 3: "d_4_3"}, |
| 96 | + {0: "d_5_0", 1: "d_5_1", 2: "d_5_2", 3: "d_5_3"}, |
| 97 | + ], |
| 98 | + ], |
| 99 | + ), |
| 100 | + ( |
| 101 | + make_static_cache( |
| 102 | + [ |
| 103 | + (torch.rand((4, 5, 6, 7)), torch.rand((4, 5, 6, 7))), |
| 104 | + (torch.rand((4, 5, 6, 7)), torch.rand((4, 5, 6, 7))), |
| 105 | + (torch.rand((4, 5, 6, 7)), torch.rand((4, 5, 6, 7))), |
| 106 | + ], |
| 107 | + max_cache_len=15, |
| 108 | + ), |
| 109 | + [ |
| 110 | + [ |
| 111 | + {0: "d_0_0", 1: "d_0_1", 2: "d_0_2", 3: "d_0_3"}, |
| 112 | + {0: "d_1_0", 1: "d_1_1", 2: "d_1_2", 3: "d_1_3"}, |
| 113 | + {0: "d_2_0", 1: "d_2_1", 2: "d_2_2", 3: "d_2_3"}, |
| 114 | + ], |
| 115 | + [ |
| 116 | + {0: "d_3_0", 1: "d_3_1", 2: "d_3_2", 3: "d_3_3"}, |
| 117 | + {0: "d_4_0", 1: "d_4_1", 2: "d_4_2", 3: "d_4_3"}, |
| 118 | + {0: "d_5_0", 1: "d_5_1", 2: "d_5_2", 3: "d_5_3"}, |
| 119 | + ], |
| 120 | + ], |
| 121 | + ), |
| 122 | + ( |
| 123 | + make_mamba_cache( |
| 124 | + [ |
| 125 | + (torch.rand((4, 4, 4)), torch.rand((4, 4, 4))), |
| 126 | + (torch.rand((4, 4, 4)), torch.rand((4, 4, 4))), |
| 127 | + (torch.rand((4, 4, 4)), torch.rand((4, 4, 4))), |
| 128 | + ] |
| 129 | + ), |
| 130 | + [ |
| 131 | + [ |
| 132 | + {0: "d_0_0", 1: "d_0_1", 2: "d_0_2"}, |
| 133 | + {0: "d_1_0", 1: "d_1_1", 2: "d_1_2"}, |
| 134 | + {0: "d_2_0", 1: "d_2_1", 2: "d_2_2"}, |
| 135 | + ], |
| 136 | + [ |
| 137 | + {0: "d_3_0", 1: "d_3_1", 2: "d_3_2"}, |
| 138 | + {0: "d_4_0", 1: "d_4_1", 2: "d_4_2"}, |
| 139 | + {0: "d_5_0", 1: "d_5_1", 2: "d_5_2"}, |
| 140 | + ], |
| 141 | + ], |
| 142 | + ), |
| 143 | + ] |
| 144 | + with torch_export_patches(patch_transformers=True): |
| 145 | + for cache, exds in caches: |
| 146 | + with self.subTest(cache=type(cache)): |
| 147 | + ds = all_dynamic_shape_from_inputs(cache) |
| 148 | + self.assertEqual(exds, ds) |
| 149 | + |
12 | 150 | @requires_transformers("4.52") |
13 | 151 | @requires_torch("2.7.99") |
14 | 152 | def test_all_dynamic_shape_from_inputs(self): |
|
0 commit comments