@@ -877,7 +877,11 @@ def view(
877877 print (f"[CubeLogs.view] key_columns={ key_columns } " )
878878 g = data [[* key_index , * key_columns ]].copy ()
879879 g ["count" ] = 1
880- r = g .groupby ([* key_index , * key_columns ], dropna = False ).sum ()
880+ r = (
881+ g .copy ()
882+ if not key_index and not key_columns
883+ else g .groupby ([* key_index , * key_columns ], dropna = False ).sum ()
884+ )
881885 not_unique = r [r ["count" ] > 1 ]
882886 assert not_unique .shape [0 ] == 0 , (
883887 f"view_def.name={ view_def .name !r} , "
@@ -1505,6 +1509,11 @@ def __init__(
15051509 "n_model_faster3x" ,
15061510 "n_model_faster4x" ,
15071511 "n_node_attention" ,
1512+ "n_node_attention23" ,
1513+ "n_node_rotary_embedding" ,
1514+ "n_node_rotary_embedding23" ,
1515+ "n_node_layer_normalization" ,
1516+ "n_node_layer_normalization23" ,
15081517 "n_node_control_flow" ,
15091518 "n_node_scatter" ,
15101519 "n_node_function" ,
@@ -1676,11 +1685,50 @@ def first_err(df: pandas.DataFrame) -> pandas.Series:
16761685 "time_latency" ,
16771686 gdf (df , "time_latency_eager" ) > gdf (df , "time_latency" , np .inf ) * 3.98 ,
16781687 ),
1688+ n_node_attention23 = lambda df : gpreserve (
1689+ df , "op_onnx__Attention" , gdf (df , "op_onnx__Attention" )
1690+ ),
1691+ n_node_rotary_embedding23 = lambda df : gpreserve (
1692+ df , "op_onnx__RotaryEmbedding" , gdf (df , "op_onnx__RotaryEmbedding" )
1693+ ),
1694+ n_node_layer_normalization23 = lambda df : gpreserve (
1695+ df ,
1696+ "time_latency" ,
1697+ gdf (df , "op_onnx__LayerNormalization" , 0 )
1698+ + gdf (df , "op_onnx__RMSNormalization" , 0 )
1699+ + gdf (df , "op_onnx__BatchNormlization" , 0 )
1700+ + gdf (df , "op_onnx__InstanceNormlization" , 0 )
1701+ + gdf (df , "op_onnx__GroupNormalization" , 0 ),
1702+ ),
16791703 n_node_attention = lambda df : gpreserve (
16801704 df ,
1681- "op_onnx_com.microsoft_Attention" ,
1682- gdf (df , "op_onnx_com.microsoft_Attention" )
1683- + gdf (df , "op_onnx_com.microsoft_MultiHeadAttention" ),
1705+ "time_latency" ,
1706+ gdf (df , "op_onnx_com.microsoft_Attention" , 0 )
1707+ + gdf (df , "op_onnx_com.microsoft_MultiHeadAttention" , 0 )
1708+ + gdf (df , "op_onnx_com.microsoft_PackedAttention" , 0 )
1709+ + gdf (df , "op_onnx_com.microsoft_PackedMultiHeadAttention" , 0 )
1710+ + gdf (df , "op_onnx_com.microsoft_GroupQueryAttention" , 0 )
1711+ + gdf (df , "op_onnx_com.microsoft_PagedAttention" , 0 )
1712+ + gdf (df , "op_onnx_com.microsoft_DecoderAttention" , 0 )
1713+ + gdf (df , "op_onnx_com.microsoft_LongformerAttention" , 0 )
1714+ + gdf (df , "op_onnx_com.microsoft_DecoderMaskedSelfAttention" , 0 )
1715+ + gdf (df , "op_onnx_com.microsoft_DecoderMaskedMultiHeadAttention" , 0 )
1716+ + gdf (df , "op_onnx_com.microsoft_SparseAttention" , 0 ),
1717+ ),
1718+ n_node_layer_normalization = lambda df : gpreserve (
1719+ df ,
1720+ "time_latency" ,
1721+ gdf (df , "op_onnx_com.microsoft_EmbedLayerNormalization" , 0 )
1722+ + gdf (df , "op_onnx_com.microsoft_SkipLayerNormalization" , 0 )
1723+ + gdf (df , "op_onnx_com.microsoft_LayerNormalization" , 0 )
1724+ + gdf (df , "op_onnx_com.microsoft_SkipSimplifiedLayerNormalization" , 0 )
1725+ + gdf (df , "op_onnx_com.microsoft_SimplifiedLayerNormalization" , 0 ),
1726+ ),
1727+ n_node_rotary_embedding = lambda df : gpreserve (
1728+ df ,
1729+ "time_latency" ,
1730+ gdf (df , "op_onnx_com.microsoft_GemmaRotaryEmbedding" , 0 )
1731+ + gdf (df , "op_onnx_com.microsoft_RotaryEmbedding" , 0 ),
16841732 ),
16851733 n_node_control_flow = lambda df : gpreserve (
16861734 df ,
0 commit comments