@@ -422,6 +422,27 @@ def create_onnx_model_from_input_tensors(
422422 :return: ModelProto
423423
424424 The function raises an error if not supported.
425+ An example:
426+
427+ .. code-block:: python
428+
429+ from onnx_diagnostic.helpers.mini_onnx_builder import (
430+ create_onnx_model_from_input_tensors,
431+ )
432+ import onnx
433+
434+ proto = create_onnx_model_from_input_tensors(
435+ dict(
436+ query_states=query_states,
437+ key_states=key_states,
438+ value_states=value_states,
439+ cu_seqlens=cu_seqlens,
440+ max_seqlen=(cu_seqlens[1:] - cu_seqlens[:-1]).max(),
441+ scaling=self.scaling,
442+ attn_output=attn_output,
443+ )
444+ )
445+ onnx.save(proto, "attention_inputs.onnx")
425446 """
426447 if switch_low_high is None :
427448 switch_low_high = sys .byteorder != "big"
@@ -567,6 +588,19 @@ def create_input_tensors_from_onnx_model(
567588 :return: restored data
568589
569590 See example :ref:`l-plot-intermediate-results` for an example.
591+
592+ .. code-bloc:: python
593+
594+ import os
595+ from onnx_diagnostic.helpers.mini_onnx_builder import (
596+ create_input_tensors_from_onnx_model,
597+ )
598+ from onnx_diagnostic.helpers import string_type
599+
600+ restored = create_input_tensors_from_onnx_model("attention_inputs.onnx")
601+ for k, v in restored.items():
602+ print(f"{k}: {string_type(v, with_shape=True, with_min_max=True)}")
603+
570604 """
571605 if engine == "ExtendedReferenceEvaluator" :
572606 from ..reference import ExtendedReferenceEvaluator
0 commit comments