|
| 1 | +""" |
| 2 | +.. _l-plot-tiny-llm-export-dim01: |
| 3 | +
|
| 4 | +Export with dynamic dimensions in ``{0,1}`` |
| 5 | +=========================================== |
| 6 | +
|
| 7 | +The first version of :func:`torch.export.export` did not support |
| 8 | +any tensor with a dimension equal to 0, 1 if the dimension was expected |
| 9 | +to be dynamic. The latest versions offers more options. Let's check it works. |
| 10 | +The experiments consists in exporting the model with different sets of inputs |
| 11 | +and checking the exported models works with all set of inputs. |
| 12 | +
|
| 13 | +Available input sets |
| 14 | +++++++++++++++++++++ |
| 15 | +
|
| 16 | +""" |
| 17 | + |
| 18 | +import itertools |
| 19 | +from tqdm import tqdm |
| 20 | +import numpy as np |
| 21 | +import pandas |
| 22 | +import torch |
| 23 | +from onnx_diagnostic import doc |
| 24 | +from onnx_diagnostic.helpers import max_diff, string_type |
| 25 | +from onnx_diagnostic.helpers.torch_helper import torch_deepcopy |
| 26 | +from onnx_diagnostic.torch_models.hghub.model_inputs import get_untrained_model_with_inputs |
| 27 | +from onnx_diagnostic.torch_export_patches.patch_inputs import use_dyn_not_str |
| 28 | +from onnx_diagnostic.torch_export_patches import ( |
| 29 | + torch_export_patches, |
| 30 | + register_additional_serialization_functions, |
| 31 | +) |
| 32 | + |
| 33 | + |
| 34 | +data = get_untrained_model_with_inputs("arnir0/Tiny-LLM", add_second_input=True) |
| 35 | +model, dynamic_shapes = data["model"], data["dynamic_shapes"] |
| 36 | + |
| 37 | +# %% |
| 38 | +# The trained model can be obtained with: |
| 39 | +# |
| 40 | +# .. code-block:: python |
| 41 | +# |
| 42 | +# MODEL_NAME = "arnir0/Tiny-LLM" |
| 43 | +# tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_NAME) |
| 44 | +# model = transformers.AutoModelForCausalLM.from_pretrained(MODEL_NAME) |
| 45 | + |
| 46 | +input_sets = {k: v for k, v in data.items() if k.startswith("inputs")} |
| 47 | + |
| 48 | +for k, v in input_sets.items(): |
| 49 | + print(f"{k:20}: {string_type(v, with_shape=True)}") |
| 50 | + |
| 51 | +# %% |
| 52 | +# The dynamic shapes are: |
| 53 | + |
| 54 | +print(f"dynamic_shapes: {string_type(dynamic_shapes)}") |
| 55 | + |
| 56 | +# %% The exporter does not support strings. |
| 57 | + |
| 58 | +dynamic_shapes = use_dyn_not_str(dynamic_shapes) |
| 59 | +print(f"dynamic_shapes: {string_type(dynamic_shapes)}") |
| 60 | + |
| 61 | +# %% |
| 62 | +# Let's check they all work and compute the expected values. |
| 63 | +# We use deepcopy because caches are usually modified inplace. |
| 64 | + |
| 65 | +expected = {} |
| 66 | +for k, v in input_sets.items(): |
| 67 | + expected[k] = model(**torch_deepcopy(v)) |
| 68 | + print(f"{k:20}: {string_type(expected[k], with_shape=True)}") |
| 69 | + |
| 70 | +# %% |
| 71 | +# Export with options |
| 72 | +# +++++++++++++++++++ |
| 73 | +# |
| 74 | +# We try to export with the following options: |
| 75 | +# - cache registration: register cache serialization with |
| 76 | +# :func:`onnx_diagnostic.torch_export_patches.register_additional_serialization_functions` |
| 77 | +# - oblivious: an option to remove some the exception raises by the exporter |
| 78 | +# - rt: see ``prefer_deferred_runtime_asserts_over_guards`` in :func:`torch.export.export` |
| 79 | +# - cache_patch: patches the model before exporting with |
| 80 | +# :func:`onnx_diagnostic.torch_export_patches.torch_export_patches` |
| 81 | +# |
| 82 | +# Some function first. |
| 83 | + |
| 84 | + |
| 85 | +def export_model( |
| 86 | + model, dynamic_shapes, inputs, cache=False, oblivious=False, rt=False, cache_patch=False |
| 87 | +): |
| 88 | + if cache and not cache_patch: |
| 89 | + with register_additional_serialization_functions(patch_transformers=True): |
| 90 | + return export_model(model, dynamic_shapes, inputs, oblivious=oblivious, rt=rt) |
| 91 | + if cache_patch: |
| 92 | + with torch_export_patches( |
| 93 | + patch_torch=cache_patch in ("all", "torch", True, 1), |
| 94 | + patch_transformers=cache_patch in ("all", "transformers", True, 1), |
| 95 | + ): |
| 96 | + return export_model(model, dynamic_shapes, inputs, oblivious=oblivious, rt=rt) |
| 97 | + if oblivious: |
| 98 | + with torch.fx.experimental._config.patch(backed_size_oblivious=True): |
| 99 | + return export_model(model, dynamic_shapes, inputs, rt=rt) |
| 100 | + return torch.export.export( |
| 101 | + model, |
| 102 | + (), |
| 103 | + inputs, |
| 104 | + dynamic_shapes=dynamic_shapes, |
| 105 | + prefer_deferred_runtime_asserts_over_guards=rt, |
| 106 | + ) |
| 107 | + |
| 108 | + |
| 109 | +def try_export_model( |
| 110 | + model, dynamic_shapes, inputs, cache=False, oblivious=False, rt=False, cache_patch=False |
| 111 | +): |
| 112 | + try: |
| 113 | + return export_model( |
| 114 | + model, |
| 115 | + dynamic_shapes, |
| 116 | + inputs, |
| 117 | + cache=cache, |
| 118 | + oblivious=oblivious, |
| 119 | + rt=rt, |
| 120 | + cache_patch=cache_patch, |
| 121 | + ) |
| 122 | + except Exception as e: |
| 123 | + return e |
| 124 | + |
| 125 | + |
| 126 | +def validation(ep, input_sets, expected): |
| 127 | + mod = ep.module() |
| 128 | + for k, v in input_sets.items(): |
| 129 | + try: |
| 130 | + got = mod(**torch_deepcopy(v)) |
| 131 | + except Exception as e: |
| 132 | + yield k, e |
| 133 | + continue |
| 134 | + yield k, max_diff(expected[k], got, verbose=0) |
| 135 | + |
| 136 | + |
| 137 | +# %% |
| 138 | +# The main loop |
| 139 | +# +++++++++++++ |
| 140 | + |
| 141 | +results = [] |
| 142 | + |
| 143 | +possibilities = [*[[0, 1] for _ in range(4)], list(input_sets)] |
| 144 | +possibilities[1] = [0, "all", "torch", "transformers"] |
| 145 | +with tqdm(list(itertools.product(*possibilities))) as pbar: |
| 146 | + for cache, cache_patch, oblivious, rt, inputs in pbar: |
| 147 | + if cache_patch and not cache: |
| 148 | + # patches include caches. |
| 149 | + continue |
| 150 | + kwargs = dict(cache=cache, cache_patch=cache_patch, oblivious=oblivious, rt=rt) |
| 151 | + legend = "-".join( |
| 152 | + (k if isinstance(v, int) else f"{k}:{v}") for k, v in kwargs.items() if v |
| 153 | + ) |
| 154 | + legend = f"{legend}/{inputs}" |
| 155 | + pbar.set_description(f"{legend} EXPORT") |
| 156 | + |
| 157 | + # export |
| 158 | + ep = try_export_model( |
| 159 | + model, dynamic_shapes, torch_deepcopy(input_sets[inputs]), **kwargs |
| 160 | + ) |
| 161 | + if isinstance(ep, Exception): |
| 162 | + obs = { |
| 163 | + **kwargs, |
| 164 | + "export_with": inputs, |
| 165 | + "EXPORT": 0, |
| 166 | + "ERR-EXPORT": str(ep).split("\n")[0], |
| 167 | + } |
| 168 | + results.append(obs) |
| 169 | + continue |
| 170 | + |
| 171 | + pbar.set_description(f"{legend} VALIDATE") |
| 172 | + common = {**kwargs, "export_with": inputs, "EXPORT": 1} |
| 173 | + for inp, res in validation(ep, input_sets, expected): |
| 174 | + if isinstance(res, Exception): |
| 175 | + obs = { |
| 176 | + **common, |
| 177 | + "run_with": inp, |
| 178 | + "ERR-RUN": str(res).split("\n")[0], |
| 179 | + "WORKS": 0, |
| 180 | + } |
| 181 | + else: |
| 182 | + obs = { |
| 183 | + **common, |
| 184 | + "run_with": inp, |
| 185 | + "WORKS": int(~np.isnan(res["abs"]) and res["abs"] < 1e-3), |
| 186 | + } |
| 187 | + results.append(obs) |
| 188 | + |
| 189 | +# %% |
| 190 | +# Let's save the results. |
| 191 | + |
| 192 | +df = pandas.DataFrame(results) |
| 193 | +df.to_excel("plot_export_tiny_llm_dim01.xlsx") |
| 194 | +df |
| 195 | + |
| 196 | +# %% The export failures. |
| 197 | + |
| 198 | +no_export = df[df.EXPORT == 0] |
| 199 | +no_export.to_excel("plot_export_tiny_llm_dim01.no_export.xlsx") |
| 200 | +no_export |
| 201 | + |
| 202 | +# %% |
| 203 | +# The validation failures. |
| 204 | + |
| 205 | +invalid = df[(df.EXPORT == 1) & (df.WORKS == 0)].pivot( |
| 206 | + index=["cache", "cache_patch", "oblivious", "rt", "export_with"], |
| 207 | + columns=["run_with"], |
| 208 | + values=["WORKS", "ERR-RUN"], |
| 209 | +) |
| 210 | +invalid.to_excel("plot_export_tiny_llm_dim01.invalid.xlsx") |
| 211 | +invalid |
| 212 | + |
| 213 | +# %% Successes. |
| 214 | + |
| 215 | +success = df[(df.EXPORT == 1) & (df.WORKS == 1)].pivot( |
| 216 | + index=["cache", "cache_patch", "oblivious", "rt", "export_with"], |
| 217 | + columns=["run_with"], |
| 218 | + values=["WORKS"], |
| 219 | +) |
| 220 | +success.to_excel("plot_export_tiny_llm_dim01.success.xlsx") |
| 221 | +success |
| 222 | + |
| 223 | + |
| 224 | +# %% |
| 225 | +# If you have any error, then look at example |
| 226 | +# :ref:`l-plot-tiny-llm-export-patched`. |
| 227 | + |
| 228 | +doc.plot_legend("Tiny-LLM\nexport with\ndimension in {0,1}", "torch.export.export", "tomato") |
0 commit comments