@@ -178,7 +178,7 @@ class RunAlignedRecord:
178178 The side-by-side ran by function :func:`run_aligned
179179 <onnx_diagnostic.torch_onnx.sbs.run_aligned>`
180180 yields instances of this type. If both `ep_name`
181- and `onnx_name` are speficied , then both results
181+ and `onnx_name` are specified , then both results
182182 appear in the exported program (torch) and the onnx model.
183183
184184 :param ep_id_node: node index in the exported program
@@ -261,7 +261,7 @@ def to_str(self) -> str:
261261 )
262262
263263 def update (self , err_abs : float ):
264- "Udpates all attributes with the latest measure."
264+ "Updates all attributes with the latest measure."
265265 if np .isinf (err_abs ) or np .isnan (err_abs ):
266266 self .n_inf += 1
267267 elif err_abs > 1e6 :
@@ -450,7 +450,7 @@ def forward(self, x):
450450 -v 1 --atol=0.1 --rtol=1
451451 """
452452 assert callable (run_cls ), f"run_cls={ run_cls } not a callable"
453- reset_names : Set [ str ] = set (reset_names ) if reset_names else set ()
453+ reset_names = set (reset_names ) if reset_names else set () # type: ignore[assignment]
454454 str_kws = dict (with_shape = True , with_device = True )
455455 has_cuda = any (
456456 (isinstance (t , torch .Tensor ) and t .is_cuda )
@@ -873,7 +873,7 @@ def _gemm_linear(node, feeds, sess):
873873 if k in torch_results and k not in skip_mapping_torch_onnx
874874 ]
875875 if new_names and len (new_names ) == 1 :
876- new_name = new_names [0 ] # type: ignore[assignment]
876+ new_name = new_names [0 ] # type: ignore[assignment, index ]
877877 t = torch_results [new_name ]
878878 if (
879879 t .shape == tuple (init .dims )
0 commit comments