|
| 1 | +import unittest |
| 2 | +from experimental_experiment.ext_test_case import ( |
| 3 | + ExtTestCase, |
| 4 | + requires_torch, |
| 5 | + requires_transformers, |
| 6 | + skipif_ci_windows, |
| 7 | + ignore_warnings, |
| 8 | +) |
| 9 | +from onnx_diagnostic.helpers import string_type |
| 10 | +from onnx_diagnostic.torch_export_patches.onnx_export_errors import ( |
| 11 | + bypass_export_some_errors, |
| 12 | +) |
| 13 | + |
| 14 | + |
| 15 | +class TestOnnxExportErrors(ExtTestCase): |
| 16 | + @requires_transformers("4.49.999") |
| 17 | + @skipif_ci_windows("not working on Windows") |
| 18 | + @ignore_warnings(UserWarning) |
| 19 | + def test_pytree_flatten_mamba_cache(self): |
| 20 | + import torch |
| 21 | + import torch.utils._pytree as py_pytree |
| 22 | + from transformers.cache_utils import MambaCache |
| 23 | + |
| 24 | + class _config: |
| 25 | + def __init__(self): |
| 26 | + self.intermediate_size = 8 |
| 27 | + self.state_size = 16 |
| 28 | + self.conv_kernel = 32 |
| 29 | + self.num_hidden_layers = 64 |
| 30 | + self.dtype = torch.float16 |
| 31 | + |
| 32 | + cache = MambaCache(_config(), max_batch_size=1, device="cpu") |
| 33 | + |
| 34 | + with bypass_export_some_errors(): |
| 35 | + values, spec = py_pytree.tree_flatten(cache) |
| 36 | + cache2 = py_pytree.tree_unflatten(values, spec) |
| 37 | + self.assertEqual(cache.dtype, cache2.dtype) |
| 38 | + self.assertEqual(cache.max_batch_size, cache2.max_batch_size) |
| 39 | + self.assertEqual(cache.intermediate_size, cache2.intermediate_size) |
| 40 | + self.assertEqual(cache.ssm_state_size, cache2.ssm_state_size) |
| 41 | + self.assertEqual(cache.conv_kernel_size, cache2.conv_kernel_size) |
| 42 | + self.assertEqualArrayAny(cache.conv_states, cache2.conv_states) |
| 43 | + self.assertEqualArrayAny(cache.ssm_states, cache2.ssm_states) |
| 44 | + |
| 45 | + @requires_transformers("4.43") |
| 46 | + @requires_torch("2.7") |
| 47 | + @skipif_ci_windows("not working on Windows") |
| 48 | + @ignore_warnings(UserWarning) |
| 49 | + def test_exportable_mamba_cache(self): |
| 50 | + import torch |
| 51 | + from transformers.models.mamba.modeling_mamba import MambaCache |
| 52 | + |
| 53 | + class _config: |
| 54 | + def __init__(self): |
| 55 | + self.intermediate_size = 8 |
| 56 | + self.state_size = 16 |
| 57 | + self.conv_kernel = 32 |
| 58 | + self.num_hidden_layers = 64 |
| 59 | + self.dtype = torch.float16 |
| 60 | + |
| 61 | + class Model(torch.nn.Module): |
| 62 | + def forward(self, x: torch.Tensor, cache: MambaCache): |
| 63 | + x1 = cache.ssm_states[0] + x |
| 64 | + x2 = cache.conv_states[0][:, :, ::2] + x1 |
| 65 | + return x2 |
| 66 | + |
| 67 | + cache = MambaCache(_config(), max_batch_size=1, device="cpu") |
| 68 | + self.assertEqual( |
| 69 | + string_type(cache), "MambaCache(conv_states=[T10r3,...], ssm_states=[T10r3,...])" |
| 70 | + ) |
| 71 | + x = torch.ones(2, 8, 16).to(torch.float16) |
| 72 | + model = Model() |
| 73 | + model(x, cache) |
| 74 | + |
| 75 | + with bypass_export_some_errors(): |
| 76 | + cache = MambaCache(_config(), max_batch_size=1, device="cpu") |
| 77 | + torch.export.export(Model(), (x, cache)) |
| 78 | + |
| 79 | + @requires_transformers("4.49.999") |
| 80 | + @skipif_ci_windows("not working on Windows") |
| 81 | + @ignore_warnings(UserWarning) |
| 82 | + def test_exportable_mamba_cache_dynamic(self): |
| 83 | + import torch |
| 84 | + from transformers.models.mamba.modeling_mamba import MambaCache |
| 85 | + |
| 86 | + class _config: |
| 87 | + def __init__(self): |
| 88 | + self.intermediate_size = 8 |
| 89 | + self.state_size = 16 |
| 90 | + self.conv_kernel = 32 |
| 91 | + self.num_hidden_layers = 2 |
| 92 | + self.dtype = torch.float16 |
| 93 | + |
| 94 | + class Model(torch.nn.Module): |
| 95 | + def forward(self, x: torch.Tensor, cache: MambaCache): |
| 96 | + x1 = cache.ssm_states[0] + x |
| 97 | + x2 = cache.conv_states[0][:, :, ::2] + x1 |
| 98 | + return x2 |
| 99 | + |
| 100 | + cache = MambaCache(_config(), max_batch_size=1, device="cpu") |
| 101 | + self.assertEqual( |
| 102 | + string_type(cache), |
| 103 | + "MambaCache(conv_states=#2[T10r3,T10r3], ssm_states=#2[T10r3,T10r3])", |
| 104 | + ) |
| 105 | + x = torch.ones(2, 8, 16).to(torch.float16) |
| 106 | + model = Model() |
| 107 | + model(x, cache) |
| 108 | + DYN = torch.export.Dim.DYNAMIC |
| 109 | + |
| 110 | + with bypass_export_some_errors(): |
| 111 | + cache = MambaCache(_config(), max_batch_size=1, device="cpu") |
| 112 | + torch.export.export( |
| 113 | + Model(), |
| 114 | + (x, cache), |
| 115 | + dynamic_shapes=({0: DYN}, [[{0: DYN}, {0: DYN}], [{0: DYN}, {0: DYN}]]), |
| 116 | + ) |
| 117 | + |
| 118 | + |
| 119 | +if __name__ == "__main__": |
| 120 | + unittest.main(verbosity=2) |
0 commit comments