|
| 1 | +import unittest |
| 2 | +import torch |
| 3 | +import transformers |
| 4 | +from onnx_diagnostic.ext_test_case import ExtTestCase, hide_stdout |
| 5 | +from onnx_diagnostic.helpers import string_type |
| 6 | +from onnx_diagnostic.torch_export_patches.patch_inputs import ( |
| 7 | + convert_dynamic_axes_into_dynamic_shapes, |
| 8 | +) |
| 9 | + |
| 10 | + |
| 11 | +class TestPatchInputs(ExtTestCase): |
| 12 | + @hide_stdout() |
| 13 | + def test_convert_dynamic_axes_into_dynamic_shapes_1(self): |
| 14 | + args = ( |
| 15 | + torch.randint(0, 10, size=(2, 8)).to(torch.int64), |
| 16 | + torch.randint(0, 10, size=(2, 8)).to(torch.int64), |
| 17 | + torch.randint(0, 10, size=(2, 8)).to(torch.int64), |
| 18 | + [(torch.rand((2, 1, 3, 96)), torch.rand((2, 1, 3, 96)))], |
| 19 | + ) |
| 20 | + dynamic_axes = { |
| 21 | + "attention_mask": {0: "batch_size", 1: "total_sequence_length"}, |
| 22 | + "input_ids": {0: "batch_size", 1: "sequence_length"}, |
| 23 | + "logits": {0: "batch_size", 1: "sequence_length"}, |
| 24 | + "past_key_values.0.key": {0: "batch_size", 2: "past_sequence_length"}, |
| 25 | + "past_key_values.0.value": {0: "batch_size", 2: "past_sequence_length"}, |
| 26 | + "position_ids": {0: "batch_size", 1: "sequence_length"}, |
| 27 | + "present.0.key": {0: "batch_size", 2: "total_sequence_length"}, |
| 28 | + "present.0.value": {0: "batch_size", 2: "total_sequence_length"}, |
| 29 | + } |
| 30 | + |
| 31 | + model_cls = transformers.LlamaModel |
| 32 | + res = convert_dynamic_axes_into_dynamic_shapes( |
| 33 | + model_cls, args=args, dynamic_axes=dynamic_axes, verbose=1 |
| 34 | + ) |
| 35 | + self.assertEqual((), res[0]) |
| 36 | + self.assertEqual( |
| 37 | + ( |
| 38 | + "dict(input_ids:T7s2x8,attention_mask:T7s2x8,position_ids:T7s2x8," |
| 39 | + "past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], " |
| 40 | + "value_cache=#1[T1s2x1x3x96]))" |
| 41 | + ), |
| 42 | + string_type(res[1], with_shape=True), |
| 43 | + ) |
| 44 | + self.assertEqual( |
| 45 | + { |
| 46 | + "attention_mask": {0: "batch_size", 1: "total_sequence_length"}, |
| 47 | + "input_ids": {0: "batch_size", 1: "sequence_length"}, |
| 48 | + "past_key_values": [ |
| 49 | + [{0: "batch_size", 2: "past_sequence_length"}], |
| 50 | + [{0: "batch_size", 2: "past_sequence_length"}], |
| 51 | + ], |
| 52 | + "position_ids": {0: "batch_size", 1: "sequence_length"}, |
| 53 | + }, |
| 54 | + res[2], |
| 55 | + ) |
| 56 | + |
| 57 | + @hide_stdout() |
| 58 | + def test_convert_dynamic_axes_into_dynamic_shapes_2(self): |
| 59 | + args = ( |
| 60 | + torch.randint(0, 10, size=(2, 8)).to(torch.int64), |
| 61 | + torch.randint(0, 10, size=(2, 8)).to(torch.int64), |
| 62 | + torch.randint(0, 10, size=(2, 8)).to(torch.int64), |
| 63 | + [(torch.rand((2, 1, 3, 96)), torch.rand((2, 1, 3, 96)))], |
| 64 | + ) |
| 65 | + dynamic_axes = { |
| 66 | + "input_ids": {0: "batch_size", 1: "sequence_length"}, |
| 67 | + "attention_mask": {0: "batch_size", 1: "sequence_length"}, |
| 68 | + "position_ids": {0: "batch_size", 1: "sequence_length"}, |
| 69 | + "logits": {0: "batch_size", 1: "sequence_length"}, |
| 70 | + "present.0.key": {0: "batch_size", 2: "past_sequence_length"}, |
| 71 | + "present.0.value": {0: "batch_size", 2: "past_sequence_length"}, |
| 72 | + } |
| 73 | + |
| 74 | + model_cls = transformers.LlamaModel |
| 75 | + res = convert_dynamic_axes_into_dynamic_shapes( |
| 76 | + model_cls, |
| 77 | + args=args, |
| 78 | + dynamic_axes=dynamic_axes, |
| 79 | + verbose=1, |
| 80 | + prefix_mapping={"present": "past_key_values"}, |
| 81 | + ) |
| 82 | + self.assertEqual((), res[0]) |
| 83 | + self.assertEqual( |
| 84 | + {"attention_mask", "input_ids", "past_key_values", "position_ids"}, set(res[2]) |
| 85 | + ) |
| 86 | + self.assertEqual( |
| 87 | + [ |
| 88 | + [{0: "batch_size", 2: "past_sequence_length"}], |
| 89 | + [{0: "batch_size", 2: "past_sequence_length"}], |
| 90 | + ], |
| 91 | + res[2]["past_key_values"], |
| 92 | + ) |
| 93 | + self.assertEqual( |
| 94 | + { |
| 95 | + "attention_mask": {0: "batch_size", 1: "sequence_length"}, |
| 96 | + "input_ids": {0: "batch_size", 1: "sequence_length"}, |
| 97 | + "past_key_values": [ |
| 98 | + [{0: "batch_size", 2: "past_sequence_length"}], |
| 99 | + [{0: "batch_size", 2: "past_sequence_length"}], |
| 100 | + ], |
| 101 | + "position_ids": {0: "batch_size", 1: "sequence_length"}, |
| 102 | + }, |
| 103 | + res[2], |
| 104 | + ) |
| 105 | + self.assertEqual( |
| 106 | + ( |
| 107 | + "dict(input_ids:T7s2x8,attention_mask:T7s2x8,position_ids:T7s2x8," |
| 108 | + "past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], " |
| 109 | + "value_cache=#1[T1s2x1x3x96]))" |
| 110 | + ), |
| 111 | + string_type(res[1], with_shape=True), |
| 112 | + ) |
| 113 | + |
| 114 | + |
| 115 | +if __name__ == "__main__": |
| 116 | + unittest.main(verbosity=2) |
0 commit comments