|
| 1 | +""" |
| 2 | +LayerNormalization implementation cannot be exchanged |
| 3 | +===================================================== |
| 4 | +
|
| 5 | +This example applies what was illustrated |
| 6 | +:ref:`l-plot-parallelized-reduction`, reduction operations |
| 7 | +are sensitive to parallelization. |
| 8 | +
|
| 9 | +We consider a small model including a layer normalization |
| 10 | +followed by a matrix multiplication and we show that replacing |
| 11 | +a kernel by another one may significantly impact the output. |
| 12 | +
|
| 13 | +The model |
| 14 | ++++++++++ |
| 15 | +""" |
| 16 | + |
| 17 | +import pandas |
| 18 | +import onnx |
| 19 | +import onnx.helper as oh |
| 20 | +import onnxruntime |
| 21 | +import torch |
| 22 | +from onnx_array_api.plotting.graphviz_helper import plot_dot |
| 23 | +from onnx_diagnostic.helpers import max_diff, string_diff, string_type |
| 24 | +from onnx_diagnostic.reference import TorchOnnxEvaluator |
| 25 | + |
| 26 | +TFLOAT16 = onnx.TensorProto.FLOAT16 |
| 27 | + |
| 28 | +model = oh.make_model( |
| 29 | + oh.make_graph( |
| 30 | + [ |
| 31 | + oh.make_node("LayerNormalization", ["X", "scale", "bias"], ["norm"], axis=-1), |
| 32 | + oh.make_node("MatMul", ["norm", "weights"], ["mm"]), |
| 33 | + oh.make_node("Add", ["mm", "bias2"], ["Z"]), |
| 34 | + ], |
| 35 | + "layer_norm_matmul_add", |
| 36 | + [ |
| 37 | + oh.make_tensor_value_info("X", TFLOAT16, ["a", "b", "c"]), |
| 38 | + oh.make_tensor_value_info("scale", TFLOAT16, ["c"]), |
| 39 | + oh.make_tensor_value_info("bias", TFLOAT16, ["c"]), |
| 40 | + oh.make_tensor_value_info("weights", TFLOAT16, ["c", "c"]), |
| 41 | + oh.make_tensor_value_info("bias2", TFLOAT16, ["c"]), |
| 42 | + ], |
| 43 | + [oh.make_tensor_value_info("Z", TFLOAT16, ["a", "b", "c"])], |
| 44 | + ), |
| 45 | + ir_version=9, |
| 46 | + opset_imports=[oh.make_opsetid("", 18)], |
| 47 | +) |
| 48 | + |
| 49 | +plot_dot(model) |
| 50 | + |
| 51 | +# %% |
| 52 | +# Let's compare two runtimes |
| 53 | +# ++++++++++++++++++++++++++ |
| 54 | +# |
| 55 | +# That will be :epkg:`onnxruntime` and |
| 56 | +# :class:`onnx_diagnostic.reference.TorchOnnxEvaluator`. |
| 57 | + |
| 58 | +feeds = { |
| 59 | + "X": (torch.rand((32, 1024, 1152), dtype=torch.float16) - 0.5) * 120, |
| 60 | + "scale": torch.rand((1152,), dtype=torch.float16), |
| 61 | + "bias": torch.rand((1152,), dtype=torch.float16), |
| 62 | + "weights": torch.rand((1152, 1152), dtype=torch.float16), |
| 63 | + "bias2": torch.rand((1152,), dtype=torch.float16), |
| 64 | +} |
| 65 | +np_feeds = {k: v.detach().numpy() for k, v in feeds.items()} |
| 66 | +kws = dict(with_shape=True, with_min_max=True, with_device=True) |
| 67 | +data = [] |
| 68 | + |
| 69 | +for provider in ["CPU", "CUDA"]: |
| 70 | + if provider == "CUDA": |
| 71 | + if not torch.cuda.is_available(): |
| 72 | + continue |
| 73 | + tch_feeds = {k: v.to("cuda") for k, v in feeds.items()} |
| 74 | + ort_feeds = np_feeds |
| 75 | + else: |
| 76 | + tch_feeds = feeds.copy() |
| 77 | + tch_feeds["X"] = tch_feeds["X"][:2] # too long otherwise |
| 78 | + ort_feeds = np_feeds.copy() |
| 79 | + ort_feeds["X"] = ort_feeds["X"][:2] |
| 80 | + print() |
| 81 | + print(f"-- running on {provider}") |
| 82 | + print("-- running with torch") |
| 83 | + torch_sess = TorchOnnxEvaluator(model, providers=[f"{provider}ExecutionProvider"]) |
| 84 | + expected = torch_sess.run(None, tch_feeds) |
| 85 | + print(f"-- torch: {string_type(expected, **kws)}") |
| 86 | + |
| 87 | + print("-- running with ort") |
| 88 | + ort_sess = onnxruntime.InferenceSession( |
| 89 | + model.SerializeToString(), providers=[f"{provider}ExecutionProvider"] |
| 90 | + ) |
| 91 | + got = ort_sess.run(None, ort_feeds) |
| 92 | + print(f"-- ort: {string_type(got, **kws)}") |
| 93 | + diff = max_diff(expected, got, hist=True) |
| 94 | + print(f"-- diff {string_diff(diff)}") |
| 95 | + |
| 96 | + # memorize the data |
| 97 | + diff["provider"] = provider |
| 98 | + diff.update(diff["rep"]) |
| 99 | + del diff["rep"] |
| 100 | + data.append(diff) |
| 101 | + |
| 102 | +# %% |
| 103 | +df = pandas.DataFrame(data).set_index("provider") |
| 104 | +print(df) |
0 commit comments