|
2 | 2 | from typing import Any, Callable, Dict, Optional, Sequence, Tuple |
3 | 3 | from .helper import string_sig |
4 | 4 | import pandas |
| 5 | +from pandas.api.types import is_numeric_dtype |
5 | 6 |
|
6 | 7 |
|
7 | 8 | class CubeViewDef: |
@@ -265,3 +266,165 @@ def view(self, view_def: CubeViewDef) -> pandas.DataFrame: |
265 | 266 | *[c for c in key_columns if c not in view_def.order], |
266 | 267 | ] |
267 | 268 | return data.pivot(index=key_index[::-1], columns=key_columns, values=values) |
| 269 | + |
| 270 | + def describe(self) -> pandas.DataFrame: |
| 271 | + """Basic description of all variables.""" |
| 272 | + rows = [] |
| 273 | + for name in self.data.columns: |
| 274 | + values = self.data[name] |
| 275 | + dtype = values.dtype |
| 276 | + nonan = values.dropna() |
| 277 | + obs = dict( |
| 278 | + name=name, |
| 279 | + dtype=str(dtype), |
| 280 | + missing=len(values) - len(nonan), |
| 281 | + ) |
| 282 | + if len(nonan) > 0: |
| 283 | + obs.update( |
| 284 | + dict( |
| 285 | + min=nonan.min(), |
| 286 | + max=nonan.max(), |
| 287 | + count=len(nonan), |
| 288 | + ) |
| 289 | + ) |
| 290 | + if is_numeric_dtype(nonan): |
| 291 | + obs.update( |
| 292 | + dict( |
| 293 | + mean=nonan.mean(), |
| 294 | + sum=nonan.sum(), |
| 295 | + ) |
| 296 | + ) |
| 297 | + else: |
| 298 | + unique = set(nonan) |
| 299 | + obs["n_values"] = len(unique) |
| 300 | + if len(unique) < 20: |
| 301 | + obs["values"] = ",".join(map(str, sorted(unique))) |
| 302 | + rows.append(obs) |
| 303 | + return pandas.DataFrame(rows).set_index("name") |
| 304 | + |
| 305 | + def to_excel( |
| 306 | + self, |
| 307 | + output: str, |
| 308 | + views: Dict[str, CubeViewDef], |
| 309 | + main: Optional[str] = "main", |
| 310 | + raw: Optional[str] = "raw", |
| 311 | + verbose: int = 0, |
| 312 | + ): |
| 313 | + """ |
| 314 | + Creates an excel file with a list of view. |
| 315 | +
|
| 316 | + :param output: output file to create |
| 317 | + :param views: list of views to append |
| 318 | + :param main: add a page with statitcs on all variables |
| 319 | + :param raw: add a page with the raw data |
| 320 | + :param verbose: verbosity |
| 321 | + """ |
| 322 | + |
| 323 | + with pandas.ExcelWriter(output, engine="openpyxl") as writer: |
| 324 | + if main: |
| 325 | + assert main not in views, f"{main!r} is duplicated in views {sorted(views)}" |
| 326 | + df = self.describe() |
| 327 | + if verbose: |
| 328 | + print(f"[CubeLogs.to_helper] add sheet {main!r} with shape {df.shape}") |
| 329 | + df.to_excel(writer, sheet_name=main, freeze_panes=(1, 1)) |
| 330 | + self._apply_excel_style(main, writer, df) |
| 331 | + if raw: |
| 332 | + assert main not in views, f"{main!r} is duplicated in views {sorted(views)}" |
| 333 | + if verbose: |
| 334 | + print(f"[CubeLogs.to_helper] add sheet {raw!r} with shape {self.shape}") |
| 335 | + self.data.to_excel(writer, sheet_name=raw, freeze_panes=(1, 1), index=True) |
| 336 | + self._apply_excel_style(raw, writer, self.data) |
| 337 | + |
| 338 | + for name, view in views.items(): |
| 339 | + df = self.view(view) |
| 340 | + if verbose: |
| 341 | + print( |
| 342 | + f"[CubeLogs.to_helper] add sheet {name!r} with shape " |
| 343 | + f"{df.shape}, index={df.index.names}, columns={df.columns.names}" |
| 344 | + ) |
| 345 | + df.to_excel( |
| 346 | + writer, |
| 347 | + sheet_name=name, |
| 348 | + freeze_panes=(df.index.nlevels, df.columns.nlevels), |
| 349 | + ) |
| 350 | + self._apply_excel_style(name, writer, df) |
| 351 | + if verbose: |
| 352 | + print(f"[CubeLogs.to_helper] done with {len(views)} views") |
| 353 | + |
| 354 | + def _apply_excel_style(self, name: str, writer: pandas.ExcelWriter, df: pandas.DataFrame): |
| 355 | + from openpyxl.styles import Alignment |
| 356 | + from openpyxl.utils import get_column_letter |
| 357 | + |
| 358 | + # from openpyxl.styles import Font, PatternFill, numbers |
| 359 | + |
| 360 | + left = Alignment(horizontal="left") |
| 361 | + right = Alignment(horizontal="right") |
| 362 | + # center = Alignment(horizontal="center") |
| 363 | + # bold_font = Font(bold=True) |
| 364 | + # red = Font(color="FF0000") |
| 365 | + # yellow = PatternFill(start_color="FFFF00", end_color="FFFF00", fill_type="solid") |
| 366 | + # redf = PatternFill(start_color="FF0000", end_color="FF0000", fill_type="solid") |
| 367 | + |
| 368 | + sheet = writer.sheets[name] |
| 369 | + n_rows = df.shape[0] + df.columns.nlevels + df.index.nlevels |
| 370 | + n_cols = df.shape[1] + df.index.nlevels |
| 371 | + co = {} |
| 372 | + sizes = {} |
| 373 | + cols = set() |
| 374 | + for i in range(1, n_rows): |
| 375 | + for j, cell in enumerate(sheet[i]): |
| 376 | + if j > n_cols: |
| 377 | + break |
| 378 | + cols.add(cell.column) |
| 379 | + if isinstance(cell.value, float): |
| 380 | + co[j] = co.get(j, 0) + 1 |
| 381 | + elif isinstance(cell.value, str): |
| 382 | + sizes[cell.column] = max(sizes.get(cell.column, 0), len(cell.value)) |
| 383 | + |
| 384 | + for k, v in sizes.items(): |
| 385 | + c = get_column_letter(k) |
| 386 | + sheet.column_dimensions[c].width = max(15, v) |
| 387 | + for k in cols: |
| 388 | + if k not in sizes: |
| 389 | + c = get_column_letter(k) |
| 390 | + sheet.column_dimensions[c].width = 15 |
| 391 | + |
| 392 | + for i in range(1, n_rows): |
| 393 | + for j, cell in enumerate(sheet[i]): |
| 394 | + if j > n_cols: |
| 395 | + break |
| 396 | + if isinstance(cell.value, pandas.Timestamp): |
| 397 | + cell.alignment = right |
| 398 | + dt = cell.value.to_pydatetime() |
| 399 | + cell.value = dt |
| 400 | + cell.number_format = ( |
| 401 | + "YYYY-MM-DD" |
| 402 | + if ( |
| 403 | + dt.hour == 0 |
| 404 | + and dt.minute == 0 |
| 405 | + and dt.second == 0 |
| 406 | + and dt.microsecond == 0 |
| 407 | + ) |
| 408 | + else "YYYY-MM-DD 00:00:00" |
| 409 | + ) |
| 410 | + elif isinstance(cell.value, (float, int)): |
| 411 | + cell.alignment = right |
| 412 | + x = abs(cell.value) |
| 413 | + if int(x) == x: |
| 414 | + cell.number_format = "0" |
| 415 | + elif x > 5000: |
| 416 | + cell.number_format = "# ##0" |
| 417 | + elif x >= 500: |
| 418 | + cell.number_format = "0.0" |
| 419 | + elif x >= 50: |
| 420 | + cell.number_format = "0.00" |
| 421 | + elif x >= 5: |
| 422 | + cell.number_format = "0.000" |
| 423 | + elif x > 0.5: |
| 424 | + cell.number_format = "0.0000" |
| 425 | + elif x > 0.005: |
| 426 | + cell.number_format = "0.00000" |
| 427 | + else: |
| 428 | + cell.number_format = "0.000E+00" |
| 429 | + else: |
| 430 | + cell.alignment = left |
0 commit comments