@@ -235,7 +235,7 @@ def test_benchmark_single_table_with_timeout(mock_multiprocessing, mock__score):
235235 # Setup
236236 mocked_process = mock_multiprocessing .Process .return_value
237237 manager = mock_multiprocessing .Manager .return_value
238- manager_dict = {'timeout' : True , 'error ' : 'Synthesizer Timeout' }
238+ manager_dict = {'timeout' : True , 'Error ' : 'Synthesizer Timeout' }
239239 manager .__enter__ .return_value .dict .return_value = manager_dict
240240
241241 # Run
@@ -261,7 +261,7 @@ def test_benchmark_single_table_with_timeout(mock_multiprocessing, mock__score):
261261 'Diagnostic_Score' : {0 : None },
262262 'Quality_Score' : {0 : None },
263263 'Privacy_Score' : {0 : None },
264- 'error ' : {0 : 'Synthesizer Timeout' },
264+ 'Error ' : {0 : 'Synthesizer Timeout' },
265265 'Adjusted_Total_Time' : {0 : None },
266266 'Adjusted_Quality_Score' : {0 : None },
267267 })
@@ -357,14 +357,14 @@ def test__format_output():
357357 'scores' : [
358358 {
359359 'metric' : 'NewRowSynthesis' ,
360- 'error ' : None ,
360+ 'Error ' : None ,
361361 'score' : 0.998 ,
362362 'normalized_score' : 0.998 ,
363363 'metric_time' : 6.0 ,
364364 },
365365 {
366366 'metric' : 'NewMetric' ,
367- 'error ' : None ,
367+ 'Error ' : None ,
368368 'score' : 0.998 ,
369369 'normalized_score' : 0.998 ,
370370 'metric_time' : 5.0 ,
@@ -985,15 +985,15 @@ def test__add_adjusted_scores_timeout():
985985 'Train_Time' : [np .nan , 0.5 ],
986986 'Sample_Time' : [np .nan , 0.25 ],
987987 'Quality_Score' : [np .nan , 0.5 ],
988- 'error ' : ['Synthesizer Timeout' , np .nan ],
988+ 'Error ' : ['Synthesizer Timeout' , np .nan ],
989989 })
990990 expected = pd .DataFrame ({
991991 'Synthesizer' : ['GaussianCopulaSynthesizer' , 'UniformSynthesizer' ],
992992 'Dataset' : ['dataset1' , 'dataset1' ],
993993 'Train_Time' : [np .nan , 0.5 ],
994994 'Sample_Time' : [np .nan , 0.25 ],
995995 'Quality_Score' : [np .nan , 0.5 ],
996- 'error ' : ['Synthesizer Timeout' , np .nan ],
996+ 'Error ' : ['Synthesizer Timeout' , np .nan ],
997997 'Adjusted_Total_Time' : [10.75 , 1.25 ],
998998 'Adjusted_Quality_Score' : [0.5 , 0.5 ],
999999 })
@@ -1014,15 +1014,15 @@ def test__add_adjusted_scores_errors():
10141014 'Train_Time' : [np .nan , 1.0 , 1.0 , 0.5 ],
10151015 'Sample_Time' : [np .nan , np .nan , 2.0 , 0.25 ],
10161016 'Quality_Score' : [np .nan , np .nan , np .nan , 0.5 ],
1017- 'error ' : ['ValueError' , 'RuntimeError' , 'KeyError' , np .nan ],
1017+ 'Error ' : ['ValueError' , 'RuntimeError' , 'KeyError' , np .nan ],
10181018 })
10191019 expected = pd .DataFrame ({
10201020 'Synthesizer' : ['ErrorOnTrain' , 'ErrorOnSample' , 'ErrorAfterSample' , 'UniformSynthesizer' ],
10211021 'Dataset' : ['dataset1' , 'dataset1' , 'dataset1' , 'dataset1' ],
10221022 'Train_Time' : [np .nan , 1.0 , 1.0 , 0.5 ],
10231023 'Sample_Time' : [np .nan , np .nan , 2.0 , 0.25 ],
10241024 'Quality_Score' : [np .nan , np .nan , np .nan , 0.5 ],
1025- 'error ' : ['ValueError' , 'RuntimeError' , 'KeyError' , np .nan ],
1025+ 'Error ' : ['ValueError' , 'RuntimeError' , 'KeyError' , np .nan ],
10261026 'Adjusted_Total_Time' : [0.75 , 1.75 , 3.75 , 1.25 ],
10271027 'Adjusted_Quality_Score' : [0.5 , 0.5 , 0.5 , 0.5 ],
10281028 })
0 commit comments