|
| 1 | +import json |
| 2 | + |
| 3 | +import pandas as pd |
| 4 | +from rdt.transformers.utils import learn_rounding_digits |
| 5 | + |
| 6 | + |
| 7 | +def detect_table_parameters(data): |
| 8 | + """Detect all table-level Dayz parameters. |
| 9 | +
|
| 10 | + - Detect the `num_rows` of the table. |
| 11 | +
|
| 12 | + Args: |
| 13 | + data (pd.DataFrame): The input data. |
| 14 | +
|
| 15 | + Returns: |
| 16 | + dict: A dictionary containing the detected parameters. |
| 17 | + """ |
| 18 | + return {'num_rows': len(data)} |
| 19 | + |
| 20 | + |
| 21 | +def detect_column_parameters(data, metadata, table_name): |
| 22 | + """Detect all column-level Dayz parameters. |
| 23 | +
|
| 24 | + The column-level parameters are: |
| 25 | + - The missing value proportion |
| 26 | + - The boundaries for numerical and datetime columns |
| 27 | + - The categories for categorical columns |
| 28 | + - The 'num_decimal_digits' for numerical columns |
| 29 | +
|
| 30 | + Args: |
| 31 | + data (pd.DataFrame): The input data. |
| 32 | + metadata (Metadata): The metadata object. |
| 33 | +
|
| 34 | + Returns: |
| 35 | + dict: A dictionary containing the detected parameters. |
| 36 | + """ |
| 37 | + table_metadata = metadata.tables[table_name] |
| 38 | + column_parameters = {} |
| 39 | + for column_name, column_metadata in table_metadata.columns.items(): |
| 40 | + column_parameters[column_name] = {} |
| 41 | + sdtype = column_metadata['sdtype'] |
| 42 | + if sdtype == 'numerical': |
| 43 | + column_parameters[column_name] = { |
| 44 | + 'num_decimal_digits': learn_rounding_digits(data[column_name]), |
| 45 | + 'min_value': data[column_name].min().item(), |
| 46 | + 'max_value': data[column_name].max().item(), |
| 47 | + } |
| 48 | + elif sdtype == 'datetime': |
| 49 | + datetime_format = column_metadata.get('datetime_format', None) |
| 50 | + if datetime_format: |
| 51 | + datetime_column = pd.to_datetime( |
| 52 | + data[column_name], format=datetime_format, errors='coerce' |
| 53 | + ) |
| 54 | + start_timestamp = datetime_column.min().strftime(datetime_format) |
| 55 | + end_timestamp = datetime_column.max().strftime(datetime_format) |
| 56 | + |
| 57 | + else: |
| 58 | + datetime_column = pd.to_datetime(data[column_name], errors='coerce') |
| 59 | + start_timestamp = str(datetime_column.min()) |
| 60 | + end_timestamp = str(datetime_column.max()) |
| 61 | + |
| 62 | + column_parameters[column_name] = { |
| 63 | + 'start_timestamp': start_timestamp, |
| 64 | + 'end_timestamp': end_timestamp, |
| 65 | + } |
| 66 | + elif sdtype in ['categorical', 'boolean']: |
| 67 | + column_parameters[column_name] = { |
| 68 | + 'category_values': data[column_name].dropna().unique().tolist() |
| 69 | + } |
| 70 | + |
| 71 | + column_parameters[column_name]['missing_values_proportion'] = ( |
| 72 | + data[column_name].isna().mean().item() |
| 73 | + ) |
| 74 | + |
| 75 | + return {'columns': column_parameters} |
| 76 | + |
| 77 | + |
| 78 | +def create_parameters(data, metadata, output_filename): |
| 79 | + """Detect and create a parameter dict for the DayZ model.""" |
| 80 | + metadata.validate() |
| 81 | + datas = data if isinstance(data, dict) else {metadata._get_single_table_name(): data} |
| 82 | + metadata.validate_data(datas) |
| 83 | + parameters = {'DAYZ_SPEC_VERSION': 'V1', 'tables': {}} |
| 84 | + for table_name, table_data in datas.items(): |
| 85 | + parameters['tables'][table_name] = {} |
| 86 | + parameters['tables'][table_name].update(detect_table_parameters(table_data)) |
| 87 | + parameters['tables'][table_name].update( |
| 88 | + detect_column_parameters(table_data, metadata, table_name) |
| 89 | + ) |
| 90 | + |
| 91 | + if output_filename: |
| 92 | + with open(output_filename, 'w') as f: |
| 93 | + json.dump(parameters, f, indent=4) |
| 94 | + |
| 95 | + return parameters |
0 commit comments