@@ -34,7 +34,6 @@ randomizedLasso = function(X,
34
34
noise_scale = 0.5 * sd(y ) * sqrt(mean_diag )
35
35
}
36
36
37
- print(c(noise_scale , ridge_term ))
38
37
noise_type = match.arg(noise_type )
39
38
40
39
if (noise_scale > 0 ) {
@@ -222,7 +221,7 @@ importance_weight = function(noise_scale,
222
221
target_transform ,
223
222
observed_raw ) {
224
223
225
- use_C_code = FALSE
224
+ use_C_code = TRUE
226
225
if (! use_C_code ) {
227
226
A = (opt_transform $ linear_term %*% opt_sample +
228
227
target_transform $ linear_term %*% target_sample )
@@ -278,7 +277,7 @@ conditional_density = function(noise_scale, lasso_soln) {
278
277
return (- Inf )
279
278
}
280
279
281
- use_C_code = FALSE
280
+ use_C_code = TRUE
282
281
if (! use_C_code ) {
283
282
A = reduced_B %*% as.matrix(opt_state ) + reduced_beta_offset
284
283
A = apply(A , 2 , function (x ) {x + reduced_beta_offset })
@@ -321,15 +320,10 @@ randomizedLassoInf = function(X,
321
320
lasso_soln = conditional_density(noise_scale , lasso_soln )
322
321
}
323
322
324
- dim = length(lasso_soln $ observed_opt_state )
325
- print(paste(" chain dim" , dim ))
323
+ ndim = length(lasso_soln $ observed_opt_state )
326
324
327
- # print(lasso_soln)
328
-
329
-
330
- S = sample_opt_variables(lasso_soln , jump_scale = rep(1 / sqrt(n ), dim ), nsample = nsample )
325
+ S = sample_opt_variables(lasso_soln , jump_scale = rep(1 / sqrt(n ), ndim ), nsample = nsample )
331
326
opt_samples = S $ samples [(burnin + 1 ): nsample ,]
332
- print(paste(" dim opt samples" , toString(dim(opt_samples ))))
333
327
334
328
X_E = X [, active_set ]
335
329
X_minusE = X [, inactive_set ]
0 commit comments