@@ -146,14 +146,15 @@ mu = 7.791408e-02
146
146
147
147
tol = 1.e-12
148
148
149
- A1 = debiasingMatrix(S , FALSE , n , 1 : 5 , mu = mu , max_iter = 1000 , kkt_tol = tol , objective_tol = tol , parameter_tol = tol )
150
- A2 = debiasingMatrix(S / n , FALSE , n , 1 : 5 , mu = mu , max_iter = 1000 , kkt_tol = tol , objective_tol = tol , parameter_tol = tol )
149
+ rows = c(1 : 2 )
150
+ A1 = debiasingMatrix(S , FALSE , n , rows , mu = mu , max_iter = 1000 , kkt_tol = tol , objective_tol = tol , parameter_tol = tol )
151
+ A2 = debiasingMatrix(S / n , FALSE , n , rows , mu = mu , max_iter = 1000 , kkt_tol = tol , objective_tol = tol , parameter_tol = tol )
151
152
152
- B1 = debiasingMatrix(X , TRUE , n , 1 : 5 , mu = mu , max_iter = 1000 , kkt_tol = tol , objective_tol = tol , parameter_tol = tol )
153
- B2 = debiasingMatrix(X / sqrt(n ), TRUE , n , 1 : 5 , mu = mu , max_iter = 1000 , kkt_tol = tol , objective_tol = tol , parameter_tol = tol )
153
+ B1 = debiasingMatrix(X , TRUE , n , rows , mu = mu , max_iter = 1000 , kkt_tol = tol , objective_tol = tol , parameter_tol = tol )
154
+ B2 = debiasingMatrix(X / sqrt(n ), TRUE , n , rows , mu = mu , max_iter = 1000 , kkt_tol = tol , objective_tol = tol , parameter_tol = tol )
154
155
155
- C1 = InverseLinfty(S , n , mu = mu , maxiter = 1000 )[1 : 5 ,]
156
- C2 = InverseLinfty(S / n , n , mu = mu , maxiter = 1000 )[1 : 5 ,]
156
+ C1 = InverseLinfty(S , n , mu = mu , maxiter = 1000 )[rows ,]
157
+ C2 = InverseLinfty(S / n , n , mu = mu , maxiter = 1000 )[rows ,]
157
158
158
159
par(mfrow = c(2 ,3 ))
159
160
0 commit comments