@@ -159,8 +159,7 @@ sigma=NULL, alpha=0.1,
159
159
hsigmaSinv <- solve(hsigmaS ) # pinv(hsigmaS)
160
160
161
161
# Approximate inverse covariance matrix for when (n < p) from lasso_Inference.R
162
- useC = TRUE
163
- htheta <- InverseLinfty(hsigma , n , length(S ), verbose = FALSE , useC = useC )
162
+ htheta <- InverseLinfty(hsigma , n , length(S ), verbose = FALSE )
164
163
# htheta <- InverseLinfty(hsigma, n, verbose=FALSE)
165
164
166
165
FS = rbind(diag(length(S )),matrix (0 ,pp - length(S ),length(S )))
@@ -270,7 +269,7 @@ fixedLasso.poly=
270
269
# ## Functions borrowed and slightly modified from lasso_inference.R
271
270
272
271
# # Approximates inverse covariance matrix theta
273
- InverseLinfty <- function (sigma , n , e , resol = 1.5 , mu = NULL , maxiter = 50 , threshold = 1e-2 , verbose = TRUE , useC = FALSE ) {
272
+ InverseLinfty <- function (sigma , n , e , resol = 1.5 , mu = NULL , maxiter = 50 , threshold = 1e-2 , verbose = TRUE ) {
274
273
# InverseLinfty <- function(sigma, n, resol=1.5, mu=NULL, maxiter=50, threshold=1e-2, verbose = TRUE) {
275
274
isgiven <- 1 ;
276
275
if (is.null(mu )){
@@ -295,12 +294,7 @@ InverseLinfty <- function(sigma, n, e, resol=1.5, mu=NULL, maxiter=50, threshold
295
294
incr <- 0 ;
296
295
while ((mu.stop != 1 )&& (try.no < 10 )){
297
296
last.beta <- beta
298
- useC = FALSE
299
- if (useC == FALSE ) {
300
- output <- InverseLinftyOneRow(sigma , i , mu , maxiter = maxiter , threshold = threshold )
301
- } else {
302
- output <- InverseLinftyOneRowC(sigma , i , mu , maxiter = maxiter )
303
- }
297
+ output <- InverseLinftyOneRow(sigma , i , mu , maxiter = maxiter , threshold = threshold )
304
298
beta <- output $ optsol
305
299
iter <- output $ iter
306
300
if (isgiven == 1 ){
0 commit comments