Skip to content

Commit e2f4585

Browse files
author
Jelena Markovic
committed
bug
1 parent 1115635 commit e2f4585

File tree

2 files changed

+6
-9
lines changed

2 files changed

+6
-9
lines changed

selectiveInference/R/funs.randomized.R

Lines changed: 3 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -258,8 +258,7 @@ conditional_density = function(noise_scale, lasso_soln) {
258258
return(lasso_soln)
259259
}
260260

261-
randomized_inference = function(X, y, sigma, lam, noise_scale, ridge_term,
262-
condition_subgrad=FALSE, level=0.9){
261+
randomized_inference = function(X, y, sigma, lam, noise_scale, ridge_term, level=0.9){
263262

264263
n = nrow(X)
265264
p = ncol(X)
@@ -268,9 +267,7 @@ randomized_inference = function(X, y, sigma, lam, noise_scale, ridge_term,
268267
inactive_set = lasso_soln$inactive_set
269268
nactive = length(active_set)
270269

271-
if (condition_subgrad==TRUE){
272-
lasso_soln=conditional_density(noise_scale,lasso_soln)
273-
}
270+
lasso_soln=conditional_density(noise_scale,lasso_soln)
274271

275272
dim = length(lasso_soln$observed_opt_state)
276273
print(paste("chain dim", dim))
@@ -296,7 +293,7 @@ randomized_inference = function(X, y, sigma, lam, noise_scale, ridge_term,
296293
target_cov[i,i],
297294
cov_target_internal[,i],
298295
internal_transform)
299-
target_sample = rnorm(nrow(opt_samples)) * sqrt(target_cov[i,i])
296+
target_sample = rnorm(nrow(as.matrix(opt_samples))) * sqrt(target_cov[i,i])
300297

301298
pivot = function(candidate){
302299
weights = selectiveInference:::importance_weight(noise_scale,

tests/randomized/test_instances.R

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -25,9 +25,9 @@ gaussian_instance = function(n, p, s, sigma=1, rho=0, signal=6, X=NA,
2525
}
2626

2727

28-
collect_results = function(n,p,s, nsim=100, level=0.9){
28+
collect_results = function(n,p,s, nsim=1, level=0.9){
2929
rho=0.3
30-
lam=1.
30+
lam=2.
3131
sigma=1
3232
sample_pvalues = c()
3333
sample_coverage = c()
@@ -38,7 +38,7 @@ collect_results = function(n,p,s, nsim=100, level=0.9){
3838
beta=data$beta
3939
ridge_term=sd(y)/sqrt(n)
4040
noise_scale = sd(y)/2
41-
result = selectiveInference:::randomized_inference(X,y,sigma,lam,noise_scale,ridge_term, TRUE, level)
41+
result = selectiveInference:::randomized_inference(X,y,sigma,lam,noise_scale,ridge_term, level)
4242
true_beta = beta[result$active_set]
4343
coverage = rep(0, nrow(result$ci))
4444
for (i in 1:nrow(result$ci)){

0 commit comments

Comments
 (0)