|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "id": "IJveajFZvdXK" |
| 7 | + }, |
| 8 | + "source": [ |
| 9 | + "## ConvMixer" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": null, |
| 15 | + "metadata": { |
| 16 | + "id": "q5AuzFB2tA12" |
| 17 | + }, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "#@title **Install required packages**\n", |
| 21 | + "\n", |
| 22 | + "%%capture\n", |
| 23 | + "! pip install torchinfo" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": null, |
| 29 | + "metadata": { |
| 30 | + "id": "118P89a1osHb" |
| 31 | + }, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "#@title **Importing libraries**\n", |
| 35 | + "import torch # 2.5.1+cu121\n", |
| 36 | + "import torch.nn as nn\n", |
| 37 | + "import torchinfo #1.8.0" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": null, |
| 43 | + "metadata": { |
| 44 | + "colab": { |
| 45 | + "base_uri": "https://localhost:8080/" |
| 46 | + }, |
| 47 | + "id": "QchOSIbro1zf", |
| 48 | + "outputId": "94003f5a-622f-4f54-e916-26fbbff86c17" |
| 49 | + }, |
| 50 | + "outputs": [ |
| 51 | + { |
| 52 | + "name": "stdout", |
| 53 | + "output_type": "stream", |
| 54 | + "text": [ |
| 55 | + "torch version: 2.5.1+cu121\n", |
| 56 | + "torchinfo version: 1.8.0\n" |
| 57 | + ] |
| 58 | + } |
| 59 | + ], |
| 60 | + "source": [ |
| 61 | + "# Note: Not all dependencies have the __version__ method.\n", |
| 62 | + "print(f\"torch version: {torch.__version__}\")\n", |
| 63 | + "print(f\"torchinfo version: {torchinfo.__version__}\")" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "markdown", |
| 68 | + "metadata": { |
| 69 | + "id": "hrG5QYB4pRMu" |
| 70 | + }, |
| 71 | + "source": [ |
| 72 | + "**ConvMixer architecture code**\n" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "code", |
| 77 | + "execution_count": null, |
| 78 | + "metadata": { |
| 79 | + "id": "r2d2e2P0pdan" |
| 80 | + }, |
| 81 | + "outputs": [], |
| 82 | + "source": [ |
| 83 | + "class Residual(nn.Module):\n", |
| 84 | + " def __init__(self, fn):\n", |
| 85 | + " super().__init__()\n", |
| 86 | + " self.fn = fn\n", |
| 87 | + "\n", |
| 88 | + " def forward(self, x):\n", |
| 89 | + " return self.fn(x) + x\n", |
| 90 | + "\n", |
| 91 | + "def ConvMixer(dim, depth, kernel_size = 9, patch_size = 7, n_classes = 1000):\n", |
| 92 | + " return nn.Sequential(\n", |
| 93 | + " nn.Conv2d(3, dim, kernel_size = patch_size, stride = patch_size),\n", |
| 94 | + " nn.GELU(),\n", |
| 95 | + " nn.BatchNorm2d(dim),\n", |
| 96 | + " *[nn.Sequential(\n", |
| 97 | + " Residual(nn.Sequential(\n", |
| 98 | + " nn.Conv2d(dim, dim, kernel_size, groups=dim, padding=\"same\"),\n", |
| 99 | + " nn.GELU(),\n", |
| 100 | + " nn.BatchNorm2d(dim)\n", |
| 101 | + " )),\n", |
| 102 | + " nn.Conv2d(dim,dim, kernel_size = 1),\n", |
| 103 | + " nn.GELU(),\n", |
| 104 | + " nn.BatchNorm2d(dim)\n", |
| 105 | + " )for i in range(depth)],\n", |
| 106 | + " nn.AdaptiveAvgPool2d((1,1)),\n", |
| 107 | + " nn.Flatten(),\n", |
| 108 | + " nn.Linear(dim, n_classes)\n", |
| 109 | + " )" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "code", |
| 114 | + "execution_count": null, |
| 115 | + "metadata": { |
| 116 | + "colab": { |
| 117 | + "base_uri": "https://localhost:8080/" |
| 118 | + }, |
| 119 | + "id": "9YM5zfNoslTx", |
| 120 | + "outputId": "1b5a1295-d3ac-49c9-d61d-ae986021ad00" |
| 121 | + }, |
| 122 | + "outputs": [ |
| 123 | + { |
| 124 | + "data": { |
| 125 | + "text/plain": [ |
| 126 | + "=================================================================\n", |
| 127 | + "Layer (type:depth-idx) Param #\n", |
| 128 | + "=================================================================\n", |
| 129 | + "Sequential --\n", |
| 130 | + "├─Conv2d: 1-1 8,192\n", |
| 131 | + "├─GELU: 1-2 --\n", |
| 132 | + "├─BatchNorm2d: 1-3 4,096\n", |
| 133 | + "├─Sequential: 1-4 --\n", |
| 134 | + "│ └─Residual: 2-1 --\n", |
| 135 | + "│ │ └─Sequential: 3-1 172,032\n", |
| 136 | + "│ └─Conv2d: 2-2 4,196,352\n", |
| 137 | + "│ └─GELU: 2-3 --\n", |
| 138 | + "│ └─BatchNorm2d: 2-4 4,096\n", |
| 139 | + "├─Sequential: 1-5 --\n", |
| 140 | + "│ └─Residual: 2-5 --\n", |
| 141 | + "│ │ └─Sequential: 3-2 172,032\n", |
| 142 | + "│ └─Conv2d: 2-6 4,196,352\n", |
| 143 | + "│ └─GELU: 2-7 --\n", |
| 144 | + "│ └─BatchNorm2d: 2-8 4,096\n", |
| 145 | + "├─Sequential: 1-6 --\n", |
| 146 | + "│ └─Residual: 2-9 --\n", |
| 147 | + "│ │ └─Sequential: 3-3 172,032\n", |
| 148 | + "│ └─Conv2d: 2-10 4,196,352\n", |
| 149 | + "│ └─GELU: 2-11 --\n", |
| 150 | + "│ └─BatchNorm2d: 2-12 4,096\n", |
| 151 | + "├─Sequential: 1-7 --\n", |
| 152 | + "│ └─Residual: 2-13 --\n", |
| 153 | + "│ │ └─Sequential: 3-4 172,032\n", |
| 154 | + "│ └─Conv2d: 2-14 4,196,352\n", |
| 155 | + "│ └─GELU: 2-15 --\n", |
| 156 | + "│ └─BatchNorm2d: 2-16 4,096\n", |
| 157 | + "├─Sequential: 1-8 --\n", |
| 158 | + "│ └─Residual: 2-17 --\n", |
| 159 | + "│ │ └─Sequential: 3-5 172,032\n", |
| 160 | + "│ └─Conv2d: 2-18 4,196,352\n", |
| 161 | + "│ └─GELU: 2-19 --\n", |
| 162 | + "│ └─BatchNorm2d: 2-20 4,096\n", |
| 163 | + "├─Sequential: 1-9 --\n", |
| 164 | + "│ └─Residual: 2-21 --\n", |
| 165 | + "│ │ └─Sequential: 3-6 172,032\n", |
| 166 | + "│ └─Conv2d: 2-22 4,196,352\n", |
| 167 | + "│ └─GELU: 2-23 --\n", |
| 168 | + "│ └─BatchNorm2d: 2-24 4,096\n", |
| 169 | + "├─Sequential: 1-10 --\n", |
| 170 | + "│ └─Residual: 2-25 --\n", |
| 171 | + "│ │ └─Sequential: 3-7 172,032\n", |
| 172 | + "│ └─Conv2d: 2-26 4,196,352\n", |
| 173 | + "│ └─GELU: 2-27 --\n", |
| 174 | + "│ └─BatchNorm2d: 2-28 4,096\n", |
| 175 | + "├─Sequential: 1-11 --\n", |
| 176 | + "│ └─Residual: 2-29 --\n", |
| 177 | + "│ │ └─Sequential: 3-8 172,032\n", |
| 178 | + "│ └─Conv2d: 2-30 4,196,352\n", |
| 179 | + "│ └─GELU: 2-31 --\n", |
| 180 | + "│ └─BatchNorm2d: 2-32 4,096\n", |
| 181 | + "├─AdaptiveAvgPool2d: 1-12 --\n", |
| 182 | + "├─Flatten: 1-13 --\n", |
| 183 | + "├─Linear: 1-14 2,049,000\n", |
| 184 | + "=================================================================\n", |
| 185 | + "Total params: 37,041,128\n", |
| 186 | + "Trainable params: 37,041,128\n", |
| 187 | + "Non-trainable params: 0\n", |
| 188 | + "=================================================================" |
| 189 | + ] |
| 190 | + }, |
| 191 | + "execution_count": 41, |
| 192 | + "metadata": {}, |
| 193 | + "output_type": "execute_result" |
| 194 | + } |
| 195 | + ], |
| 196 | + "source": [ |
| 197 | + "model = ConvMixer(2048, 8, kernel_size=9, patch_size=1, n_classes=1000)\n", |
| 198 | + "torchinfo.summary(model)" |
| 199 | + ] |
| 200 | + } |
| 201 | + ], |
| 202 | + "metadata": { |
| 203 | + "colab": { |
| 204 | + "provenance": [] |
| 205 | + }, |
| 206 | + "kernelspec": { |
| 207 | + "display_name": "Python 3", |
| 208 | + "name": "python3" |
| 209 | + }, |
| 210 | + "language_info": { |
| 211 | + "name": "python" |
| 212 | + } |
| 213 | + }, |
| 214 | + "nbformat": 4, |
| 215 | + "nbformat_minor": 0 |
| 216 | +} |
0 commit comments