|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 |
| - "execution_count": 1, |
| 5 | + "execution_count": 29, |
6 | 6 | "metadata": {},
|
7 | 7 | "outputs": [],
|
8 | 8 | "source": [
|
|
18 | 18 | },
|
19 | 19 | {
|
20 | 20 | "cell_type": "code",
|
21 |
| - "execution_count": 4, |
| 21 | + "execution_count": 30, |
22 | 22 | "metadata": {},
|
23 | 23 | "outputs": [],
|
24 | 24 | "source": [
|
|
43 | 43 | },
|
44 | 44 | {
|
45 | 45 | "cell_type": "code",
|
46 |
| - "execution_count": 5, |
| 46 | + "execution_count": 31, |
47 | 47 | "metadata": {},
|
48 | 48 | "outputs": [],
|
49 | 49 | "source": [
|
|
65 | 65 | },
|
66 | 66 | {
|
67 | 67 | "cell_type": "code",
|
68 |
| - "execution_count": 6, |
| 68 | + "execution_count": 32, |
69 | 69 | "metadata": {},
|
70 | 70 | "outputs": [],
|
71 | 71 | "source": [
|
|
81 | 81 | },
|
82 | 82 | {
|
83 | 83 | "cell_type": "code",
|
84 |
| - "execution_count": 7, |
| 84 | + "execution_count": 39, |
85 | 85 | "metadata": {},
|
86 | 86 | "outputs": [
|
87 | 87 | {
|
88 | 88 | "name": "stdout",
|
89 | 89 | "output_type": "stream",
|
90 | 90 | "text": [
|
91 | 91 | "Number of datasets each algorithm does best on:\n",
|
92 |
| - "Counter({'AutoGluon (sec=120)': 84, 'AutoGluon (sec=60)': 74, 'LightGBM (n_iter=25)': 74, 'LightGBM (n_iter=10)': 68, 'Logistic Regression': 64, 'Random Forest': 64, 'SVC': 35})\n" |
| 92 | + "Counter({'AutoGluon (sec=120)': 84, 'AutoGluon (sec=60)': 74, 'LightGBM (n_iter=25)': 74, 'LightGBM (n_iter=10)': 68, 'Logistic Regression': 64, 'Random Forest': 64, 'SVC': 35}) \n", |
| 93 | + "\n", |
| 94 | + "Average performance for each algorithm: model\n", |
| 95 | + "AutoGluon (sec=120) 0.887491\n", |
| 96 | + "AutoGluon (sec=60) 0.886326\n", |
| 97 | + "LightGBM (n_iter=10) 0.886359\n", |
| 98 | + "LightGBM (n_iter=25) 0.888885\n", |
| 99 | + "Logistic Regression 0.857380\n", |
| 100 | + "Random Forest 0.886253\n", |
| 101 | + "SVC 0.852368\n", |
| 102 | + "Name: mean_auroc, dtype: float64 \n", |
| 103 | + "\n", |
| 104 | + "Median performance for each algorithm: model\n", |
| 105 | + "AutoGluon (sec=120) 0.924359\n", |
| 106 | + "AutoGluon (sec=60) 0.925754\n", |
| 107 | + "LightGBM (n_iter=10) 0.924920\n", |
| 108 | + "LightGBM (n_iter=25) 0.927121\n", |
| 109 | + "Logistic Regression 0.891617\n", |
| 110 | + "Random Forest 0.922966\n", |
| 111 | + "SVC 0.880665\n", |
| 112 | + "Name: mean_auroc, dtype: float64\n" |
93 | 113 | ]
|
94 | 114 | }
|
95 | 115 | ],
|
|
103 | 123 | " winning_algorithms.extend(df_sub.loc[df_sub['mean_auroc'] >= highest_auroc * 0.995, 'model'])\n",
|
104 | 124 | "\n",
|
105 | 125 | "print('Number of datasets each algorithm does best on:')\n",
|
106 |
| - "print(Counter(winning_algorithms))" |
| 126 | + "print(Counter(winning_algorithms), '\\n')\n", |
| 127 | + "print('Average performance for each algorithm:', results_df.groupby('model')['mean_auroc'].mean(), '\\n')\n", |
| 128 | + "print('Median performance for each algorithm:', results_df.groupby('model')['mean_auroc'].median())" |
107 | 129 | ]
|
108 | 130 | },
|
109 | 131 | {
|
110 | 132 | "cell_type": "code",
|
111 |
| - "execution_count": 27, |
| 133 | + "execution_count": 35, |
112 | 134 | "metadata": {},
|
113 | 135 | "outputs": [
|
114 | 136 | {
|
|
117 | 139 | "<AxesSubplot:xlabel='mean_auroc', ylabel='model'>"
|
118 | 140 | ]
|
119 | 141 | },
|
120 |
| - "execution_count": 27, |
| 142 | + "execution_count": 35, |
121 | 143 | "metadata": {},
|
122 | 144 | "output_type": "execute_result"
|
123 | 145 | },
|
|
0 commit comments