Skip to content

Commit 1d18442

Browse files
author
Sergey Feldman
committed
update make figures
1 parent a2af377 commit 1d18442

File tree

1 file changed

+31
-9
lines changed

1 file changed

+31
-9
lines changed

make_figures.ipynb

Lines changed: 31 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "code",
5-
"execution_count": 1,
5+
"execution_count": 29,
66
"metadata": {},
77
"outputs": [],
88
"source": [
@@ -18,7 +18,7 @@
1818
},
1919
{
2020
"cell_type": "code",
21-
"execution_count": 4,
21+
"execution_count": 30,
2222
"metadata": {},
2323
"outputs": [],
2424
"source": [
@@ -43,7 +43,7 @@
4343
},
4444
{
4545
"cell_type": "code",
46-
"execution_count": 5,
46+
"execution_count": 31,
4747
"metadata": {},
4848
"outputs": [],
4949
"source": [
@@ -65,7 +65,7 @@
6565
},
6666
{
6767
"cell_type": "code",
68-
"execution_count": 6,
68+
"execution_count": 32,
6969
"metadata": {},
7070
"outputs": [],
7171
"source": [
@@ -81,15 +81,35 @@
8181
},
8282
{
8383
"cell_type": "code",
84-
"execution_count": 7,
84+
"execution_count": 39,
8585
"metadata": {},
8686
"outputs": [
8787
{
8888
"name": "stdout",
8989
"output_type": "stream",
9090
"text": [
9191
"Number of datasets each algorithm does best on:\n",
92-
"Counter({'AutoGluon (sec=120)': 84, 'AutoGluon (sec=60)': 74, 'LightGBM (n_iter=25)': 74, 'LightGBM (n_iter=10)': 68, 'Logistic Regression': 64, 'Random Forest': 64, 'SVC': 35})\n"
92+
"Counter({'AutoGluon (sec=120)': 84, 'AutoGluon (sec=60)': 74, 'LightGBM (n_iter=25)': 74, 'LightGBM (n_iter=10)': 68, 'Logistic Regression': 64, 'Random Forest': 64, 'SVC': 35}) \n",
93+
"\n",
94+
"Average performance for each algorithm: model\n",
95+
"AutoGluon (sec=120) 0.887491\n",
96+
"AutoGluon (sec=60) 0.886326\n",
97+
"LightGBM (n_iter=10) 0.886359\n",
98+
"LightGBM (n_iter=25) 0.888885\n",
99+
"Logistic Regression 0.857380\n",
100+
"Random Forest 0.886253\n",
101+
"SVC 0.852368\n",
102+
"Name: mean_auroc, dtype: float64 \n",
103+
"\n",
104+
"Median performance for each algorithm: model\n",
105+
"AutoGluon (sec=120) 0.924359\n",
106+
"AutoGluon (sec=60) 0.925754\n",
107+
"LightGBM (n_iter=10) 0.924920\n",
108+
"LightGBM (n_iter=25) 0.927121\n",
109+
"Logistic Regression 0.891617\n",
110+
"Random Forest 0.922966\n",
111+
"SVC 0.880665\n",
112+
"Name: mean_auroc, dtype: float64\n"
93113
]
94114
}
95115
],
@@ -103,12 +123,14 @@
103123
" winning_algorithms.extend(df_sub.loc[df_sub['mean_auroc'] >= highest_auroc * 0.995, 'model'])\n",
104124
"\n",
105125
"print('Number of datasets each algorithm does best on:')\n",
106-
"print(Counter(winning_algorithms))"
126+
"print(Counter(winning_algorithms), '\\n')\n",
127+
"print('Average performance for each algorithm:', results_df.groupby('model')['mean_auroc'].mean(), '\\n')\n",
128+
"print('Median performance for each algorithm:', results_df.groupby('model')['mean_auroc'].median())"
107129
]
108130
},
109131
{
110132
"cell_type": "code",
111-
"execution_count": 27,
133+
"execution_count": 35,
112134
"metadata": {},
113135
"outputs": [
114136
{
@@ -117,7 +139,7 @@
117139
"<AxesSubplot:xlabel='mean_auroc', ylabel='model'>"
118140
]
119141
},
120-
"execution_count": 27,
142+
"execution_count": 35,
121143
"metadata": {},
122144
"output_type": "execute_result"
123145
},

0 commit comments

Comments
 (0)