2
2
Which linear models are optimal?
3
3
"""
4
4
5
- import numpy as np
6
- import pandas as pd
7
5
import os
8
6
import time
7
+ import pickle
8
+ import numpy as np
9
+ import pandas as pd
9
10
from scipy .io import arff
10
11
from sklearn .svm import SVC
11
12
from sklearn .linear_model import RidgeClassifier , LogisticRegression
@@ -55,7 +56,9 @@ def evaluate_pipeline_helper(X, y, pipeline, param_grid, random_state=0):
55
56
56
57
def define_and_evaluate_pipelines (X , y , random_state = 0 ):
57
58
# LinearSVC
58
- pipeline1 = Pipeline ([("scaler" , MinMaxScaler ()), ("svc" , SVC (kernel = "linear" , probability = True , random_state = random_state ))])
59
+ pipeline1 = Pipeline (
60
+ [("scaler" , MinMaxScaler ()), ("svc" , SVC (kernel = "linear" , probability = True , random_state = random_state ))]
61
+ )
59
62
param_grid1 = {
60
63
"svc__C" : [1e-4 , 1e-3 , 5e-3 , 1e-2 , 5e-2 , 1e-1 , 1e1 , 1e2 ],
61
64
}
@@ -90,7 +93,6 @@ def define_and_evaluate_pipelines(X, y, random_state=0):
90
93
results1 = []
91
94
results2 = []
92
95
results3 = []
93
- results4 = []
94
96
evaluated_datasets = []
95
97
times = []
96
98
for i , dataset_name in enumerate (database .index .values ):
@@ -114,3 +116,4 @@ def define_and_evaluate_pipelines(X, y, random_state=0):
114
116
evaluated_datasets .append (dataset_name )
115
117
times .append (elapsed )
116
118
print ("done. elapsed:" , elapsed )
119
+
0 commit comments