@@ -219,18 +219,18 @@ def pca(
219219 Principal axes defined as eigenvectors for sample covariance matrix.
220220 In the context of SVD, these are equivalent to the right singular
221221 vectors in the decomposition of a (N, M) matrix,
222- i.e. ``dask_ml.decomposition .TruncatedSVD.components_``.
222+ i.e. ``sgkit.stats.truncated_svd .TruncatedSVD.components_``.
223223 sample_pca_loading : [array-like, shape: (M, C)]
224224 Principal axes scaled by square root of eigenvalues.
225225 These values can also be interpreted as the correlation between the
226226 original variables and the unit-scaled principal axes.
227227 sample_pca_explained_variance : [array-like, shape: (C,)]
228228 Variance explained by each principal component. These values are equivalent
229229 to eigenvalues that result from the eigendecomposition of a (N, M) matrix,
230- i.e. ``dask_ml.decomposition .TruncatedSVD.explained_variance_``.
230+ i.e. ``sgkit.stats.truncated_svd .TruncatedSVD.explained_variance_``.
231231 sample_pca_explained_variance_ratio : [array-like, shape: (C,)]
232232 Ratio of variance explained to total variance for each principal component,
233- i.e. ``dask_ml.decomposition .TruncatedSVD.explained_variance_ratio_``.
233+ i.e. ``sgkit.stats.truncated_svd .TruncatedSVD.explained_variance_ratio_``.
234234
235235 Examples
236236 --------
0 commit comments