@@ -75,7 +75,7 @@ def count_call_alleles(
7575 from .aggregation_numba_fns import count_alleles
7676
7777 variables .validate (ds , {call_genotype : variables .call_genotype_spec })
78- n_alleles = ds .dims ["alleles" ]
78+ n_alleles = ds .sizes ["alleles" ]
7979 G = da .asarray (ds [call_genotype ])
8080 shape = (G .chunks [0 ], G .chunks [1 ], n_alleles )
8181 # use numpy array to avoid dask task dependencies between chunks
@@ -170,8 +170,8 @@ def count_variant_alleles(
170170 from .aggregation_numba_fns import count_alleles
171171
172172 variables .validate (ds , {call_genotype : variables .call_genotype_spec })
173- n_alleles = ds .dims ["alleles" ]
174- n_variant = ds .dims ["variants" ]
173+ n_alleles = ds .sizes ["alleles" ]
174+ n_variant = ds .sizes ["variants" ]
175175 G = da .asarray (ds [call_genotype ]).reshape ((n_variant , - 1 ))
176176 shape = (G .chunks [0 ], n_alleles )
177177 # use uint64 dummy array to return uin64 counts array
@@ -227,7 +227,7 @@ def count_cohort_alleles(
227227 >>> ds = sg.simulate_genotype_call_dataset(n_variant=5, n_sample=4)
228228
229229 >>> # Divide samples into two cohorts
230- >>> ds["sample_cohort"] = xr.DataArray(np.repeat([0, 1], ds.dims ["samples"] // 2), dims="samples")
230+ >>> ds["sample_cohort"] = xr.DataArray(np.repeat([0, 1], ds.sizes ["samples"] // 2), dims="samples")
231231 >>> sg.display_genotypes(ds) # doctest: +NORMALIZE_WHITESPACE
232232 samples S0 S1 S2 S3
233233 variants
@@ -364,8 +364,8 @@ def count_variant_genotypes(
364364 mixed_ploidy = ds [call_genotype ].attrs .get ("mixed_ploidy" , False )
365365 if mixed_ploidy :
366366 raise ValueError ("Mixed-ploidy dataset" )
367- ploidy = ds .dims ["ploidy" ]
368- n_alleles = ds .dims ["alleles" ]
367+ ploidy = ds .sizes ["ploidy" ]
368+ n_alleles = ds .sizes ["alleles" ]
369369 n_genotypes = _comb_with_replacement (n_alleles , ploidy )
370370 G = da .asarray (ds [call_genotype ].data )
371371 N = np .empty (n_genotypes , np .uint64 )
@@ -432,8 +432,8 @@ def genotype_coords(
432432 """
433433 from .conversion_numba_fns import _comb_with_replacement , _index_as_genotype
434434
435- n_alleles = ds .dims ["alleles" ]
436- ploidy = ds .dims ["ploidy" ]
435+ n_alleles = ds .sizes ["alleles" ]
436+ ploidy = ds .sizes ["ploidy" ]
437437 n_genotypes = _comb_with_replacement (n_alleles , ploidy )
438438 max_chars = len (str (n_alleles - 1 ))
439439 # dummy variable for ploidy dim also specifies output dtype
@@ -553,7 +553,7 @@ def cohort_allele_frequencies(
553553 >>> ds = sg.simulate_genotype_call_dataset(n_variant=5, n_sample=4)
554554
555555 >>> # Divide samples into two cohorts
556- >>> ds["sample_cohort"] = xr.DataArray(np.repeat([0, 1], ds.dims ["samples"] // 2), dims="samples")
556+ >>> ds["sample_cohort"] = xr.DataArray(np.repeat([0, 1], ds.sizes ["samples"] // 2), dims="samples")
557557 >>> sg.display_genotypes(ds) # doctest: +NORMALIZE_WHITESPACE
558558 samples S0 S1 S2 S3
559559 variants
0 commit comments