|
| 1 | +import numpy as np |
| 2 | +import pytest |
| 3 | + |
| 4 | +pytest.importorskip("bio2zarr") |
| 5 | +from bio2zarr import vcf2zarr |
| 6 | +from bio2zarr.constants import ( |
| 7 | + FLOAT32_FILL, |
| 8 | + FLOAT32_MISSING, |
| 9 | + INT_FILL, |
| 10 | + INT_MISSING, |
| 11 | + STR_FILL, |
| 12 | + STR_MISSING, |
| 13 | +) |
| 14 | +from numpy.testing import assert_array_almost_equal, assert_array_equal |
| 15 | + |
| 16 | +from sgkit import load_dataset, save_dataset |
| 17 | +from sgkit.model import get_contigs, get_filters, num_contigs |
| 18 | +from sgkit.tests.io.test_dataset import assert_identical |
| 19 | + |
| 20 | + |
| 21 | +@pytest.mark.filterwarnings("ignore::xarray.coding.variables.SerializationWarning") |
| 22 | +def test_vcf2zarr_compat(shared_datadir, tmp_path): |
| 23 | + vcf_path = shared_datadir / "sample.vcf.gz" |
| 24 | + vcz_path = tmp_path.joinpath("sample.vcz").as_posix() |
| 25 | + |
| 26 | + vcf2zarr.convert( |
| 27 | + [vcf_path], |
| 28 | + vcz_path, |
| 29 | + variants_chunk_size=5, |
| 30 | + samples_chunk_size=2, |
| 31 | + worker_processes=0, |
| 32 | + ) |
| 33 | + |
| 34 | + ds = load_dataset(vcz_path) |
| 35 | + |
| 36 | + assert_array_equal(ds["filter_id"], ["PASS", "s50", "q10"]) |
| 37 | + assert_array_equal(get_filters(ds), ["PASS", "s50", "q10"]) # utility function |
| 38 | + assert_array_equal( |
| 39 | + ds["variant_filter"], |
| 40 | + [ |
| 41 | + [False, False, False], |
| 42 | + [False, False, False], |
| 43 | + [True, False, False], |
| 44 | + [False, False, True], |
| 45 | + [True, False, False], |
| 46 | + [True, False, False], |
| 47 | + [True, False, False], |
| 48 | + [False, False, False], |
| 49 | + [True, False, False], |
| 50 | + ], |
| 51 | + ) |
| 52 | + assert num_contigs(ds) == 3 |
| 53 | + assert_array_equal(ds["contig_id"], ["19", "20", "X"]) |
| 54 | + assert_array_equal(get_contigs(ds), ["19", "20", "X"]) # utility function |
| 55 | + assert "contig_length" not in ds |
| 56 | + assert_array_equal(ds["variant_contig"], [0, 0, 1, 1, 1, 1, 1, 1, 2]) |
| 57 | + assert ds["variant_contig"].chunks[0][0] == 5 |
| 58 | + |
| 59 | + assert_array_equal( |
| 60 | + ds["variant_position"], |
| 61 | + [111, 112, 14370, 17330, 1110696, 1230237, 1234567, 1235237, 10], |
| 62 | + ) |
| 63 | + assert ds["variant_position"].chunks[0][0] == 5 |
| 64 | + |
| 65 | + im = INT_MISSING |
| 66 | + if_ = INT_FILL |
| 67 | + fm = FLOAT32_MISSING |
| 68 | + ff = FLOAT32_FILL |
| 69 | + sm = STR_MISSING |
| 70 | + sf = STR_FILL |
| 71 | + |
| 72 | + assert_array_equal( |
| 73 | + ds["variant_NS"], |
| 74 | + [im, im, 3, 3, 2, 3, 3, im, im], |
| 75 | + ) |
| 76 | + assert ds["variant_NS"].chunks[0][0] == 5 |
| 77 | + |
| 78 | + assert_array_equal( |
| 79 | + ds["variant_AN"], |
| 80 | + [im, im, im, im, im, im, 6, im, im], |
| 81 | + ) |
| 82 | + assert ds["variant_AN"].chunks[0][0] == 5 |
| 83 | + |
| 84 | + assert_array_equal( |
| 85 | + ds["variant_AA"], |
| 86 | + [ |
| 87 | + sm, |
| 88 | + sm, |
| 89 | + sm, |
| 90 | + sm, |
| 91 | + "T", |
| 92 | + "T", |
| 93 | + "G", |
| 94 | + sm, |
| 95 | + sm, |
| 96 | + ], |
| 97 | + ) |
| 98 | + assert ds["variant_AN"].chunks[0][0] == 5 |
| 99 | + |
| 100 | + assert_array_equal( |
| 101 | + ds["variant_DB"], |
| 102 | + [ |
| 103 | + False, |
| 104 | + False, |
| 105 | + True, |
| 106 | + False, |
| 107 | + True, |
| 108 | + False, |
| 109 | + False, |
| 110 | + False, |
| 111 | + False, |
| 112 | + ], |
| 113 | + ) |
| 114 | + assert ds["variant_AN"].chunks[0][0] == 5 |
| 115 | + |
| 116 | + variant_AF = np.array( |
| 117 | + [ |
| 118 | + [fm, fm], |
| 119 | + [fm, fm], |
| 120 | + [0.5, ff], |
| 121 | + [0.017, ff], |
| 122 | + [0.333, 0.667], |
| 123 | + [fm, fm], |
| 124 | + [fm, fm], |
| 125 | + [fm, fm], |
| 126 | + [fm, fm], |
| 127 | + ], |
| 128 | + dtype=np.float32, |
| 129 | + ) |
| 130 | + values = ds["variant_AF"].values |
| 131 | + assert_array_almost_equal(values, variant_AF, 3) |
| 132 | + nans = np.isnan(variant_AF) |
| 133 | + assert_array_equal(variant_AF.view(np.int32)[nans], values.view(np.int32)[nans]) |
| 134 | + assert ds["variant_AF"].chunks[0][0] == 5 |
| 135 | + |
| 136 | + assert_array_equal( |
| 137 | + ds["variant_AC"], |
| 138 | + [ |
| 139 | + [im, im], |
| 140 | + [im, im], |
| 141 | + [im, im], |
| 142 | + [im, im], |
| 143 | + [im, im], |
| 144 | + [im, im], |
| 145 | + [3, 1], |
| 146 | + [im, im], |
| 147 | + [im, im], |
| 148 | + ], |
| 149 | + ) |
| 150 | + assert ds["variant_AC"].chunks[0][0] == 5 |
| 151 | + |
| 152 | + assert_array_equal( |
| 153 | + ds["variant_allele"].values.tolist(), |
| 154 | + [ |
| 155 | + ["A", "C", sf, sf], |
| 156 | + ["A", "G", sf, sf], |
| 157 | + ["G", "A", sf, sf], |
| 158 | + ["T", "A", sf, sf], |
| 159 | + ["A", "G", "T", sf], |
| 160 | + ["T", sf, sf, sf], |
| 161 | + ["G", "GA", "GAC", sf], |
| 162 | + ["T", sf, sf, sf], |
| 163 | + ["AC", "A", "ATG", "C"], |
| 164 | + ], |
| 165 | + ) |
| 166 | + assert ds["variant_allele"].chunks[0][0] == 5 |
| 167 | + assert ds["variant_allele"].dtype == "O" |
| 168 | + assert_array_equal( |
| 169 | + ds["variant_id"].values.tolist(), |
| 170 | + [sm, sm, "rs6054257", sm, "rs6040355", sm, "microsat1", sm, "rsTest"], |
| 171 | + ) |
| 172 | + assert ds["variant_id"].chunks[0][0] == 5 |
| 173 | + assert ds["variant_id"].dtype == "O" |
| 174 | + assert_array_equal( |
| 175 | + ds["variant_id_mask"], |
| 176 | + [True, True, False, True, False, True, False, True, False], |
| 177 | + ) |
| 178 | + assert ds["variant_id_mask"].chunks[0][0] == 5 |
| 179 | + |
| 180 | + assert_array_equal(ds["sample_id"], ["NA00001", "NA00002", "NA00003"]) |
| 181 | + assert ds["sample_id"].chunks[0][0] == 2 |
| 182 | + |
| 183 | + call_genotype = np.array( |
| 184 | + [ |
| 185 | + [[0, 0], [0, 0], [0, 1]], |
| 186 | + [[0, 0], [0, 0], [0, 1]], |
| 187 | + [[0, 0], [1, 0], [1, 1]], |
| 188 | + [[0, 0], [0, 1], [0, 0]], |
| 189 | + [[1, 2], [2, 1], [2, 2]], |
| 190 | + [[0, 0], [0, 0], [0, 0]], |
| 191 | + [[0, 1], [0, 2], [im, im]], |
| 192 | + [[0, 0], [0, 0], [im, im]], |
| 193 | + [[0, if_], [0, 1], [0, 2]], |
| 194 | + ], |
| 195 | + dtype="i1", |
| 196 | + ) |
| 197 | + call_genotype_phased = np.array( |
| 198 | + [ |
| 199 | + [True, True, False], |
| 200 | + [True, True, False], |
| 201 | + [True, True, False], |
| 202 | + [True, True, False], |
| 203 | + [True, True, False], |
| 204 | + [True, True, False], |
| 205 | + [False, False, False], |
| 206 | + [False, True, False], |
| 207 | + [True, False, True], |
| 208 | + ], |
| 209 | + dtype=bool, |
| 210 | + ) |
| 211 | + call_DP = [ |
| 212 | + [im, im, im], |
| 213 | + [im, im, im], |
| 214 | + [1, 8, 5], |
| 215 | + [3, 5, 3], |
| 216 | + [6, 0, 4], |
| 217 | + [im, 4, 2], |
| 218 | + [4, 2, 3], |
| 219 | + [im, im, im], |
| 220 | + [im, im, im], |
| 221 | + ] |
| 222 | + call_HQ = [ |
| 223 | + [[10, 15], [10, 10], [3, 3]], |
| 224 | + [[10, 10], [10, 10], [3, 3]], |
| 225 | + [[51, 51], [51, 51], [im, im]], |
| 226 | + [[58, 50], [65, 3], [im, im]], |
| 227 | + [[23, 27], [18, 2], [im, im]], |
| 228 | + [[56, 60], [51, 51], [im, im]], |
| 229 | + [[im, im], [im, im], [im, im]], |
| 230 | + [[im, im], [im, im], [im, im]], |
| 231 | + [[im, im], [im, im], [im, im]], |
| 232 | + ] |
| 233 | + |
| 234 | + assert_array_equal(ds["call_genotype"], call_genotype) |
| 235 | + assert_array_equal(ds["call_genotype_mask"], call_genotype < 0) |
| 236 | + assert_array_equal(ds["call_genotype_phased"], call_genotype_phased) |
| 237 | + assert_array_equal(ds["call_DP"], call_DP) |
| 238 | + assert_array_equal(ds["call_HQ"], call_HQ) |
| 239 | + |
| 240 | + for name in ["call_genotype", "call_genotype_mask", "call_HQ"]: |
| 241 | + assert ds[name].chunks == ((5, 4), (2, 1), (2,)) |
| 242 | + |
| 243 | + for name in ["call_genotype_phased", "call_DP"]: |
| 244 | + assert ds[name].chunks == ((5, 4), (2, 1)) |
| 245 | + |
| 246 | + # save and load again to test https://github.com/pydata/xarray/issues/3476 |
| 247 | + path2 = tmp_path / "ds2.zarr" |
| 248 | + save_dataset(ds, path2) |
| 249 | + assert_identical(ds, load_dataset(path2)) |
0 commit comments