Skip to content

Commit 3dc270f

Browse files
committed
shrink-detection-fixes-2
1 parent 46a71af commit 3dc270f

File tree

3 files changed

+12
-4
lines changed

3 files changed

+12
-4
lines changed
101 KB
Loading
-58 KB
Loading

site/sigmaguides/src/partners_snowflake_retail_loss_prevention_shrink_detection/partners_snowflake_retail_loss_prevention_shrink_detection.md

Lines changed: 12 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ You will modernize the Big Buys security stack by integrating Sigma, Snowflake,
2929

3030
### Target Audience
3131

32-
Participants of Snowflake Sales Kickoff 2026 who are interested in getting hands-on with Sigma and Snowflake. No SQL or technical data skills are required for this hands-on lab.
32+
Participants of Snowflake Sales Kickoff 2027 who are interested in getting hands-on with Sigma and Snowflake. No SQL or technical data skills are required for this hands-on lab.
3333

3434
### Prerequisites
3535

@@ -55,7 +55,7 @@ This section covers the initial setup required for the hands-on lab.
5555
<strong>NOTE:</strong><br> The setup process is the same as the Snowflake Summit 2025 lab. If you have already completed that setup, you can skip to Module 1.
5656
</aside>
5757

58-
For detailed setup instructions, see the [Snowflake Summit 2025 QuickStart Setup](https://quickstarts.sigmacomputing.com/guide/partners_snowflake_summit_2025/index.html?index=..%2F..index#1)
58+
For detailed setup instructions, see the [Snowflake Internal Only - Summit 2025 Hands on Lab](https://quickstarts.sigmacomputing.com/guide/partners_snowflake_summit_2025_internal_only/index.html#1)
5959

6060
The setup includes:
6161
- Access to a pre-configured Sigma environment
@@ -392,6 +392,10 @@ The static flags often miss suspicious transactions or incorrectly flag legitima
392392

393393
<img src="assets/rlp_33.png" width="700"/>
394394

395+
**Step 10** - Because running Python on massive datasets can be time-consuming, the model has already been run on the full POS dataset. A pipeline is now active, refreshing the data nightly.
396+
397+
- Table Name: BIG_BUYS_ENRICHED_POS_PYTHON_MODEL
398+
395399
### Access the Full Production Model
396400

397401
<!-- <aside class="positive">
@@ -436,6 +440,10 @@ d. `Sort` the table by the `PERCENT FLAGGED` column in descending order to prior
436440

437441
<img src="assets/rlp_37.png" width="350"/>
438442

443+
e. Add `Conditional formatting` to the `PERCENT FLAGGED` column. Add `Color Scale` > `Format` > `Type`:
444+
445+
<img src="assets/rlp_37a.png" width="350"/>
446+
439447
### Update Data Sources
440448

441449
**Step 2**: Select the `DATA EXPLORE` tab and update the data sources for the `TOTAL TRANSACTIONS KPI` chart
@@ -447,7 +455,7 @@ d. `Sort` the table by the `PERCENT FLAGGED` column in descending order to prior
447455

448456
<img src="assets/rlp_39.png" width="400"/>
449457

450-
Repeat the process for the other elements:
458+
Repeat the process for the other elements, but the source will instead be `ONLY_FLAGGED_SCANS_V2`:
451459

452460
- `FLAGGED TRANSACTIONS KPI` chart<br>
453461
- `FLAGGED TRANSACTIONS BY HOUR AND WEEKDAY` pivot table<br>
@@ -500,7 +508,7 @@ A pre-configured Chat Agent has been integrated into the workbook to facilitate
500508

501509
<img src="assets/rlp_45.png" width="800"/>
502510

503-
1. Enter the following prompt to identify high-volume risk areas:
511+
1. Enter the following prompt to identify the high risk orders:
504512
```
505513
Show me the list of top 5 order numbers that have the most anomalous scans.
506514
```

0 commit comments

Comments
 (0)